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of the compiled binary form of this book’s source code. You may not redis-
tribute the source code contained in this book, without the written permission
of Heaton Research, Inc. Your purchase, acceptance, or use of the Software
will constitute your acceptance of such terms.
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by Dave Snell, ASA, MAAA, FLMI, CLU, ChFC, ARA, ACS, MCP
Technology evangelist, RGA Reinsurance Company

As editor for several years of the Society of Actuaries’ Forecasting & Futurism
newsletter, I have had the pleasure of working with many talented mathemati-
cians, economists, and futurists who are sharing their knowledge about new
techniques to better deal with our increasingly complex world. A couple of
years ago, I persuaded Jeff Heaton, a non-actuary, to enter our genetic algo-
rithms contest, and he won it! Jeff has since been a frequent contributor, a
colleague (we now work together), a co-presenter at Society of Actuaries meet-
ings across the country, and a great friend and co-conspirator in our ongoing
adventure into machine learning. Jeff has been involved in machine learn-
ing, artificial intelligence (AI), and associated topics for a long time. It was
his hobby and a passion for him; now he is employed as a data scientist and
loving the chance to indulge in his hobby on the day job. His enthusiasm is
contagious, and I think you will discover that as you read his books.

Jeff’s website, www.heatonresearch.com gets over 100,000 hits per month
from researchers, academics, and just plain hobbyists across the world. ENCOG,
his open source engine for cognitive studies, is used by medical doctors looking
for better ways to detect cancers and high frequency traders trying to optimize
their trade algorithms.
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Recently, Jeff was accepted into a PhD program in computer science. Un-
like several other AI book authors, Jeff is not an academic professor trying to
pontificate and obfuscate with sophisticated formulas and arcane terminolo-
gies to flaunt his intellectual prowess. Some of those books seem self-serving
and tiresome. Likewise, he is not assuming that the reader is a ”dummy.” I
personally find the Dummies series of books objectionable. Who wants to be
treated as a dummy? Jeff is one of us! He has learned his craft by reading and
doing and coding and revising. He struggled with the linear algebra necessary
for some AI solutions and had to take courses to learn it. He has empathy for
the intelligent layperson who wants to learn about AI and needs some help
through the specialized mathematics. He spares us the learning curve of a
favorite programming language that some author decides to impose upon all
readers. Jeff has made a special effort to make this book readable by humans
- not dummies - not just PhDs in statistics or computer science. It is for real
humans who want to understand what this AI stuff is all about and why it is
taking on ever increasing importance as the big data tsunami engulfs us.

Jeff has learned from feedback on his ENCOG engine and on his previous
books that a reader does not want to have to learn a new computer program-
ming language just to try a new AI technique. The examples here are in
pseudocode so that everyone can understand them; the website provides them
in several programming languages for you so you can reinforce the learning
process with hands-on practice. You can make your own modifications to the
”non-secret” code. This is not a black box type of presentation. It is an in-
ducement to dive in and enjoy the pool! If you are a programmer in any of
the languages Java, R, Python, C#, C, Scala, and probably lots more since
this foreword was written, then you can download and run all of the examples.
The code has been tested. It runs. You won’t have to spend your time cursing
the code instead of enjoying the AI learning experience.
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OK, I emphasized how readable the book is. That does not mean it is
trivial in content. In this volume, he covers topics such as genetic algorithms,
ant colony optimization, and particle swarm optimization. He shows what they
are, when and why they are useful, and how you can implement them. These
are not trivial topics. His entire series Artificial Intelligence for Humans covers
some exciting topics that most people consider daunting. Is it brain surgery?
No! But it’s neural networks and some leading-edge topics such as deep belief
networks. Enjoy the book. Enjoy the series. Enjoy the adventure!

Dave Snell took early retirement in 2007 from his position as VP, Asia-
Pacific Technology for RGA Reinsurance Company, where, based in Syd-
ney, Australia, he managed new and existing technology for all of Asia
and Australia. Currently, he is back home in the U.S. and a consultant
to the Vice Chair of RGA, where he networks with kindred spirits among
actuaries and technology associates to identify and overcome business ob-
stacles through better use of technology tools. Dave has written thousands
of programs in dozens of programming languages - including an artificial
intelligence-based expert system in use in over a dozen countries and sev-
eral languages. A machine learning process he co-invented was recently
granted U.S. patent 8775218.





xxiii

Introduction

• Series Introduction

• Example Computer Languages

• Prerequisite Knowledge

• Fundamental Algorithms

• Other Resources

• Structure of this Book

This book is the second in a series covering select topics in artificial intelli-
gence (AI), a large field of study that encompasses many sub-disciplines. This
introduction will provide some background information for readers who might
not have read Volume 1. It is not necessary to read Volume 1 before this book.
The following sections introduce both the series and the first volume.

0.1 Series Introduction

This series of books introduces the reader to a variety of popular topics in arti-
ficial intelligence. By no means are these volumes intended to be an exhaustive
AI resource. However, each book presents a specific area of AI to familiarize
the reader with some of the latest techniques in this field of computer science.
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The series teaches artificial intelligence concepts in a mathematically gentle
manner, which is why I named the series Artificial Intelligence for Humans. As
a result, I always follow the theories with real-world programming examples
and pseudocode instead of relying solely on mathematical formulas. Still, I
make these assumptions:

• The reader is proficient in at least one programming language.

• The reader has a basic understanding of college algebra.

• The reader does not necessarily have much experience with formulas
from calculus, linear algebra, differential equations, and statistics. I will
introduce these formulas when necessary.

Finally, the book’s examples have been ported to a number of programming
languages. Readers can adapt the examples to the language that fits their
particular programming needs.

0.1.1 Programming Languages

Although the book’s text stays at the pseudocode level, I provide example
packs for Java, C# and Python. The Scala programming language has a
community-supplied port, and readers are also working on porting the ex-
amples to additional languages. So, your favorite language might have been
ported since this printing. Check the book’s GitHub repository for more in-
formation. I highly encourage readers of the books to help port to other lan-
guages. If you would like to get involved, Appendix A has more information
to get you started.
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0.1.2 Online Labs

Many of the examples from this series use JavaScript and are available to run
online, using HTML5. Mobile devices must also have HTML5 capability to
run the programs. You can find all online lab materials at the following web
site:

http://www.aifh.org
These online labs allow you to experiment with the examples even as you

read the e-book from a mobile device.

0.1.3 Code Repositories

All of the code for this project is released under the Apache Open Source
License v2 and can be found at the following GitHub repository:

https://github.com/jeffheaton/aifh
The online labs, written in Javascript, can be found at the following GitHub

repository:
https://github.com/jeffheaton/aifh-html
If you find something broken, misspelled, or otherwise botched as you work

with the examples, you can fork the project and push a commit revision to
GitHub. You will also receive credit among the growing number of contribu-
tors. Refer to Appendix A for more information on contributing code.

0.1.4 Books Planned for the Series

The following volumes are planned for this series:

• Volume 0: Introduction to the Math of AI

• Volume 1: Fundamental Algorithms

• Volume 2: Nature-Inspired Algorithms

• Volume 3: Deep Belief and Neural Networks

http://www.aifh.org
https://github.com/jeffheaton/aifh
https://github.com/jeffheaton/aifh-html
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I will produce Volumes 1, 2, and 3 in order. Volume 0 is a planned prequel
that I will create near the end of the series. While all the books will include
the required mathematical formulas to implement the programs, the prequel
will recap and expand on all the concepts from the earlier volumes. I also
intend to produce more books on AI after the publication of Volume 3.

In general, you can read the books in any order. Each book’s introduction
will provide some background material from previous volumes. This organi-
zation allows you to jump quickly to the volume that contains your area of
interest. If you want to supplement your knowledge at a later point, you can
read the previous volume.

0.1.5 Other Resources

Many other resources on the Internet will be very useful as you read through
this series of books.

The first resource is Khan Academy, a nonprofit educational website that
provides videos to demonstrate many areas of mathematics. If you need ad-
ditional review on any mathematical concept in this book, Khan Academy
probably has a video on that information.

http://www.khanacademy.org/
The second resource is the Neural Network FAQ. This text-only resource

has a great deal of information on neural networks and other AI topics.
http://www.faqs.org/faqs/ai-faq/neural-nets/
Although the information in this book is not necessarily tied to Encog, the

Encog wiki has a fair amount of general information on machine learning.
http://www.heatonresearch.com/wiki/Main_Page
Finally, you can discuss AI and neural networks on the Encog forums.

Since these forums are fairly active, community members or I will answer your
questions.

http://www.heatonresearch.com/forum

http://www.khanacademy.org/
http://www.faqs.org/faqs/ai-faq/neural-nets/
http://www.heatonresearch.com/wiki/Main_Page
http://www.heatonresearch.com/forum
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0.2 Nature-Inspired Algorithms Introduction

Nature can inspire the artificial intelligence programmer. This book introduces
algorithms based on genomes, birds, ants, and trees. These algorithms can be
used to find optimal paths, recognize patterns, find equations behind data,
and even simulate simple life.

Sometimes organisms in nature cooperate with each other. Packs of wolves
will hunt together. Flocks of birds migrate together. As a programmer, you
can design a group of virtual organisms to solve a problem together.

Other times, organisms in nature compete against each other. We can
use survival of the fittest to guide the evolution of a program. Evolutionary
algorithms allow multiple, potential solutions to compete, breed, and evolve.
After many generations, a potentially good solution will evolve.

It is important to remember that we only seek inspiration from nature. We
do not seek to duplicate nature. However, we can deviate from the biological
processes should the need arise. Real biological processes are usually much
more complex than the processes that even our most advanced computers can
simulate.

0.3 Structure of this Book

Chapter 1, “Population and Scoring,” introduces concepts that will be featured
throughout the rest of the book. Nature-inspired algorithms solve problems by
developing a population of solutions. Scoring allows the algorithm to evaluate
the effectiveness of the members of a population.

Chapter 2, “Crossover and Mutation,” shows several ways that popula-
tion members can create potentially better solutions for the next generation.
Crossover permits two or more potential solutions to combine their traits to
create offspring for the next generation. Mutation lets a single offspring create
a slightly altered version of itself for the next generation.
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Chapter 3, “Genetic Algorithms,” combines the ideas from the previous
chapters into a concrete algorithm. Genetic algorithms optimize fixed-length
arrays through evolution to provide better results. This chapter will show how
to use fixed-length arrays to find solutions for the traveling salesman problem
(TSP) as well as to predict iris species using measurements of the flower.

Chapter 4, “Genetic Programming,” demonstrates that the solution array
for an evolutionary algorithm does not always need to be a fixed length. In
fact, using these ideas, you can represent computer programs as trees that
evolve to produce other programs that better perform their intended task.

Chapter 5, “Speciation,” discusses how to divide the population into a
species. Just as crossover created offspring through the combination of two
individuals from the population, speciation produces offspring through the
mating of similar solutions. Programmers borrowed this concept from nature;
only organisms of the same species pair off and reproduce.

Chapter 6, “Particle Swarm Optimization,” uses groups of particles to
search for optimal solutions. This grouping instinct in computer software is
modeled after nature. Examples like herds of cattle, swarms of insects, flocks
of birds, and schools of fish show the natural preference of organisms to travel
in groups as the best solution against predators.

Chapter 7, “Ant Colony Optimization,” discusses how the pheromone trails
from ants can provide inspiration to computer programmers. As more ants
follow the chemicals left by their fellow workers, the trails become stronger.
Computer programs can incorporate a similar technique to find an optimal
solution.

Chapter 8, “Cellular Automation,” utilizes simple rules to produce very
complex results and patterns. The key to creating an interesting cellular au-
tomation is to find simple rules that can be evolved using a human-based
genetic algorithm.

Chapter 9, “Artificial Life,” seeks to mirror life and contains one of the
book’s capstone projects. You will create a program that simulates the growth
of plants. To help you check your progress, I will provide the code at three
milestones.
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Chapter 10, “Modeling Problems,” discusses how data science uses nature-
inspired algorithms. It also contains the book’s second capstone project. Using
data sets from one of the Kaggle (http://www.kaggle.com) tutorial competi-
tions, I will show you how to create a model to predict whether the passengers
on the Titanic survived or died. I also present this capstone in three milestones
so that you can verify your progress.

0.4 The Kickstarter Campaign

In 2013, I launched this series of books after a successful Kickstarter (http://www.kickstarter.com)
campaign. Figure 1 shows the home page of the Kickstarter project for Volume
2.

Figure 1: The Kickstarter Campaign

You can visit the original Kickstarter at the following link:
http://goo.gl/kESfwp

http://goo.gl/kESfwp
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I would like to thank all of the Kickstarter backers of the project. Without
your support, this series might not exist. I would also like to extend a special
thanks to those backers who supported the book at the $100 and higher levels.
They are listed here in the order that they backed.

• Tracy Heaton (#1, repeat backer)

• Dr. Warren D. Lerner (#9, repeat backer)

• Travis (#11, repeat backer)

• Steffen Andersen (#118, repeat backer)

• Dave Snell (#127, repeat backer)

• Jacob Kenner (#134)

• Jeffrey F. Elrod (#146, repeat backer)

• Damien Lebreuilly (#220, repeat backer)

• Peter Edwards (#242)

• Jeremy Achin (#325)

• Sergio Mendoza (#348)

• Dr. JT Kostman (#376, repeat backer)

Finally, I would like to give a very big thank you to Rory Graves and Matic
Potocnik for porting the examples to Scala for both volumes. Aaron Basil
(Ethervision) provided technical editing and provided some valuable sugges-
tions. My wife, Tracy Heaton, edited the book. Dave Snell provided advice
and wrote the book’s forward. Dan Walker also provided several great sugges-
tions for the book.

Thank you, everyone–you are the best!
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0.5 Background Information

You can read Artificial Intelligence for Humans in any order. However, this
book does expand on some topics introduced in Volume 1. The next few
sections will review these topics.

0.5.1 Vectors

A vector is essentially a one-dimensional array. Do not confuse the dimension-
ality of the vector array with the dimensions of your problem. Even if your
problem had 10 inputs, you would still have a vector. Your 10 inputs would
be stored in a vector of length 10.

In AI, a programmer uses a vector to store observations about a particular
instance that might be a location, statistics on customers, measurements of a
plant or even the weights of a neural network–it all depends on the problem
you seek to solve. The idea of a vector connects to the real world concept of
distance. For example, a point on a sheet of paper has two dimensions, which
we usually call x and y. Likewise, a point in 3D space has three dimensions,
with the labels as x, y, and z. You can store a two-dimensional point in a
vector of length 2. Likewise, you can store a 3D point in a vector of length 3.

Although scientists sometimes consider time the fourth dimension, our uni-
verse comprises three perceivable dimensions. Adding time results in a man-
ifold, or combination, but this does not imply that it is a true dimension
compared with the other three. The combination of time with the three spa-
tial dimensions is called the space-time continuum. Because humans cannot
perceive these higher dimensions, comprehending dimensional spaces higher
than three is difficult. However, high dimensional spaces are quite common in
AI.
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Because AI frequently uses the iris data set (Fisher, 1936), you will see it
several times in this book. It contains measurements and species information
for 150 iris flowers, and the data are essentially represented as a spreadsheet
with the following columns or features:

• Sepal length

• Sepal width

• Petal length

• Petal width

• Iris species

Petals refer to the innermost petals of the iris, and sepal refers to the outermost
petals of the iris flower. Even though the data set seems to have a vector of
length 5, the species feature must be handled differently than the other four. In
other words, vectors typically contain only numbers. So, the first four features
are inherently numerical. The species feature is not.

One of the primary applications of this data set is to create a program that
will act as a classifier. That is, it will consider the flower’s features as inputs
(sepal length, petal width, etc.,) and ultimately determine the species. This
classification would be trivial for a complete and known data set, but our goal
is to see whether the model can correctly identify the species using data from
unknown irises.

Only simple numeric encoding translates the iris species to a single di-
mension. We must use additional dimensional encodings, such as one-of-n or
equilateral so that the species encodings are equidistant from each other. If
we are classifying irises, we do not want our encoding process to create any
biases.
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Thinking of the iris features as dimensions in a higher dimensional space
makes a great deal of sense. Consider the individual samples (the rows in the
iris data set) as points in this search space. Points closer together likely share
similarities. Let’s take a look at these similarities by studying the following
three rows from the iris data set:
5 . 1 , 3 . 5 , 1 . 4 , 0 . 2 , I r i s −s e t o s a
7 . 0 , 3 . 2 , 4 . 7 , 1 . 4 , I r i s −v e r s i c o l o r
6 . 3 , 3 . 3 , 6 . 0 , 2 . 5 , I r i s −v i r g i n i c a

The first line has 5.1 as the sepal length, 3.5 as the sepal width, 1.4 as the
petal length, and 0.2 as the petal width. If we use one-of-n encoding to the
range 0 to 1, the above three rows would encode to the following three vectors:

[ 5 . 1 , 3 . 5 , 1 . 4 , 0 . 2 , 1 , 0 , 0 ]
[ 7 . 0 , 3 . 2 , 4 . 7 , 1 . 4 , 0 , 1 , 0 ]
[ 6 . 3 , 3 . 3 , 6 . 0 , 2 . 5 , 0 , 0 , 1 ]

Equilateral, discussed in Volume 1, is another way the species could have
potentially been encoded. Now that you have the data in vector form, you
can calculate the distance between any two data items. The next few sections
will describe several different methods to calculate the distance between two
vectors.

0.5.2 Distance

The Euclidean distance measurement, developed from the Pythagorean the-
orem, is based on the actual two-dimensional distance between two vectors.
In other words, if you drew the vectors and measured them with a ruler, the
difference between the two points would be the Euclidean distance measure-
ment. Specifically, if you had two points (x1,y1) and (x2,y2), the distance
between the two would be described in the following way:

d =
√

(x2 − x1)2 + (y2 − y1)2 (1)
Figure 2 shows a two-dimensional Euclidean distance between two points.
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Figure 2: Two-Dimensional Euclidean Distance

This formula is adequate to compare two vectors of length 2. However, most
vectors are longer than two numbers. To calculate the Euclidean distance for
vectors of any size, use the general form of the Euclidean distance equation.

Machine learning often utilizes the Euclidean distance measurement be-
cause it is a quick way to compare two vectors of numbers that have the same
amount of elements. Consider three vectors, named vector a, vector b, and
vector c. The Euclidean distance between array a and array b is 10. The Eu-
clidean distance between array a and array c is 20. In this case, the contents
of array a more closely match array b than they do array c.

Equation 1 shows a formula provided by Deza (2009) for calculating the
Euclidean distance.
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d(p,q) = d(q,p) =
√√√√ n∑
i=1

(qi − pi)2 (2)

The above equation shows us the Euclidean distance d between two arrays p
and q. It also states that d(p,q) is the same as d(q,p). In other words, the
distance is the same no matter which end is the starting point. Calculating
the Euclidean distance requires nothing more than summing the squares of the
difference of each array element. After you calculate the sum of the squares,
find the square root of this sum. This value is the Euclidean distance.

The following shows Equation 1 in pseudocode form:
sub euc l i d ean ( pos i t i on1 , p o s i t i o n 2 ) :

sum = 0
for i from 0 to l en ( p o s i t i o n 1 )−1:

d = p o s i t i o n 1 [ i ] − p o s i t i o n 2 [ i ]
sum = sum + d ∗ d ;

return s q r t (sum) ;

0.5.3 Modeling with a RBF Network

Artificial intelligence uses models to accept an input vector and produce the
correct output, allowing the model to recognize the input. For example, you
might provide input for the four measurements in Fisher’s iris data set and
expect an output that tells you the species of the iris. In this section, we
will introduce a radial-basis function (RBF) network (Bishop, 1996). The
RBF network is a model for regression and classification. A regression model
returns a number whereas a classification model returns a non-numeric value,
such as an iris species.

In order to allow the input to generate the correct output, the RBF net-
work uses a parameter vector, a model that specifies weights and coefficients.
By adjusting a random parameter vector, the RBF network produces output
consistent with the iris data set. The process of adjusting the parameter vec-
tor to produce the desired output is called training. Many different methods
exist for training an RBF network. The parameter vectors also represent its
long-term memory.
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The next section will briefly review RBFs and describe the exact makeup
of these vectors.

0.5.4 Radial-Basis Functions

Because many AI algorithms utilize radial-basis functions, they are a very
important concept to understand. A radial-basis function is symmetric with
respect to its center, which is usually somewhere along the x-axis. The RBF
will reach its maximum value or peak at the center. Whereas a typical setting
for the peak in RBF networks is 1, the center varies accordingly.

RBFs can have many dimensions. Regardless of the number of dimensions
in the vector passed to the RBF, its output will always be a single scalar value.

RBFs are quite common in AI. We will start with the most prevalent, the
Gaussian function. Figure 3 shows a graph of a 1D Gaussian function centered
at 0.

Figure 3: Gaussian Function

You might recognize the above curve as a normal distribution or a bell
curve, which is a radial-basis function. These are commonly used to selectively
scale numeric values, and a Gaussian function follows this model. Consider
Figure 3. If you used this function to scale numeric values, the result would
have maximum intensity at the center. As you moved from the center, the
intensity would diminish in either the positive or negative directions.
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Before we can look at the equation for the Gaussian RBF, we must consider
how to process the multiple dimensions. RBFs accept multi-dimensional input.
Using this input, an RBF returns a single value by calculating the distance
between the input and the center vector of the RBF. This distance is called r.
The RBF center and input to the RBF must always have the same number of
dimensions for the calculation to occur. Once we calculate r, we can calculate
the individual RBF function. All of the RBF functions use this calculated r.

Equation 2 shows how to calculate r.

r = ||x− xi|| (3)
The double vertical bars that you see in the above equation signify that the
function describes a distance. In certain cases, these distances can vary; how-
ever, RBFs typically utilize Euclidean distance. As a result, the examples that
I provide in this book always apply the Euclidean distance. Therefore, r is
simply the Euclidean distance between the center and the x vector. In each
of the RBF functions in this section, I will use this value r.

The equation for a Gaussian RBF is shown in Equation 3.

φ(r) = e−r
2 (4)

Once you’ve calculated r, calculating the RBF is fairly easy. The Greek letter
PHI, which you see at the left of the equation, always represents the RBF.
The constant e in Equation 3 represents Euler’s number, or the natural base,
and is approximately 2.71828.

0.5.5 Radial-Basis Function Networks

RBF networks provide a weighted summation of one or more radial-basis func-
tions; each of these functions receives the weighted input attributes in order
to predict the output. Consider the RBF network as a long equation that con-
tains the parameter vector. Equation 4 shows the equation needed to calculate
the output of this network.
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f(X) =
N∑
i=1

aip(||biX − ci||) (5)

Note that the double vertical bars in the above equation signify to take the
distance. Such symbols do not specify what distance algorithm to use; the
choice is yours. In the above equation, X is the input vector of attributes; c is
the vector center of the RBF; p is the chosen RBF (Gaussian, for example);
a is the vector coefficient (or weight) for each RBF; and b specifies the vector
coefficient to weight the input attributes.

In our example, we will apply an RBF network to the iris data set. Figure
4 provides a graphic representation of this application.

Figure 4: The RBF Network for the Iris Data

The above network contains four inputs (the length and width of petals and
sepals) that indicate the features that describe each iris species. The above
diagram assumes that we are using one-of-n encoding for the three different
iris species. Using equilateral encoding for only two outputs is also possible.
However, we will use one-of-n to keep things simple and arbitrarily choose
three RBF functions. Even though additional RBF functions allow the model
to learn more complex data sets, they require more time to process.
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Arrows represent all coefficients from the equation. In Equation 4, b rep-
resents the arrows between the input attributes and the RBFs. Similarly, a
represents the arrows between the RBFs and the summation. Notice also the
bias box, which is a synthetic function that always returns a value of 1. Be-
cause the bias function’s output is constant, the program does not require
inputs. The weights from the bias to the summation specify the y-intercept
for the equation. In short, bias is not always bad. This case demonstrates
that bias is an important component to the RBF network. Bias nodes are also
very common in neural networks.

Because multiple summations exist, you can see the development of a clas-
sification problem. The highest summation specifies the predicted class. A
regression problem indicates that the model will output a single numeric value.

You will also notice that Figure 4 contains a bias node in the place where
an additional RBF function might be used. However, the bias node does not
accept any input–unlike the RBF. It always outputs a constant value of 1.
Of course, this constant value of 1 is multiplied by a coefficient value, which
always causes the coefficient to be directly added to the output, regardless of
the input. When the input is 0, bias nodes are very useful because they allow
the RBF layer to output values despite the low value of the input.

The long-term memory vector for the RBF network has several different
components:

• Input coefficients

• Output/Summation coefficients

• RBF width scalars (same width in all dimensions)

• RBF center vectors

The RBF network will store all of these components as a single vector that will
become its long-term memory. Then we will use an optimization algorithm
to set the vector to values that will produce the correct iris species for the
features presented. This book features several optimization algorithms that
can train an RBF network.
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This model works almost exactly like the polynomial from an earlier exam-
ple. The only difference is that the equation is much more complex because
we must now calculate several output values and RBF functions.

In conclusion, this introduction provided a basic overview of vectors, dis-
tance, and RBF networks. Since this discussion included only the prerequisite
material to understand Volume 2, refer to Volume 1 for a more thorough ex-
planation of these topics.
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Chapter 1

Population, Scoring and
Selection

• Populations

• Elitism

• Scoring

• Selection

• Scalability of Selection Algorithms

Artificial intelligence (AI) programming typically seeks solutions to problems.
AI programming is not so different from traditional computer programming in
its pursuit of solutions. However, the solution discovery process in AI is much
more abstract and automated than traditional programming. AI solutions are
often expressed as support vector machines (SVM), neural networks, random
forests, genetic programs, hidden Markov models, and many more. Collec-
tively, these AI techniques are referred to as models. A model takes input
and produces an appropriate response. Our own human brain is the ultimate
model.

You will often deal with many different models together as a population.
Populations of models are used in many algorithms in order to solve a problem.
We see the value of populations in the animal kingdom as certain species work
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together for survival. Birds flock to find food. Wolves usually hunt in packs.
In this sense, a population can be considered as a group. Populations can
also exist over time, evolving to adapt to their environment. For example, a
small population of solutions may work to find the shortest route through a
number of cities. Yet not every use of populations is so gradual; smaller units
of a population can organize themselves to solve a problem. For example, a
program might evolve an equation through many generations to better explain
data.

Populations are necessary, but you must have a way to score their members.
For example, in human society, we evaluate each other all the time for college
admissions, promotions, and work projects. In AI, scoring allows a program to
compare two competing solutions in a population in order to choose the best
one. Additionally, scoring plays a role in many forms of selection that leads
to the final solution.

Selection is the process by which a member of a population is chosen for
a specific task. In nature, the selection process occurs when organisms that
are well adapted to their environment survive to reproduce and continue the
species. This is natural selection. AI uses both positive and negative forms of
selection. Solutions with good scores are selected to help find better solutions.
Conversely, solutions with bad scores are selected for termination in order to
make way for better solutions.

This chapter will discuss population, scoring, and selection. You will be
shown several techniques for each topic. These concepts lay the foundation for
Chapter 2, where we will use selected solutions to find better solutions.
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1.1 Understanding Populations

The use of the term “population” in this chapter is mostly compatible with
the definitions seen in the Merriam-Webster Dictionary (2014). One such
definition is “a group of people or animals of a particular kind that live in
a place.” For this book, populations are groups of potential solutions to a
problem. These potential solutions are the same kind because these solutions
are all intended to solve an identical problem. Sometimes members of the
solution population will be broken into different species. However, I will still
refer to members of these species as belonging to the same population.

Population is also a term commonly used in the study of statistics. A
statistical population is defined as “a group of individual persons, objects, or
items from which samples are taken for statistical measurement” (Merriam-
Webster, 2014). In statistics, you frequently segment a population into smaller
manageable groups called samples. Often we will sample from the population
with bias towards a better score. Other times we may conduct a purely random
sampling that gives each member of the population an equal opportunity to
be chosen.

The population of solutions is also treated as a statistical population. As
statisticians typically take samples of a population, an evolutionary algorithm
will sample the population of solutions. Sampling typically involves taking a
randomly selected group of one or more individuals from the population of
potential solutions. These samples are then used for selection. Sampling for
selection will be discussed later in this chapter.
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1.1.1 Initial Population

A population size will not typically change as the evolutionary algorithm pro-
gresses. The population size is a hard limit. For example, if you specify a
population size of 500, then there will always be 500 individuals. If 5 new
individuals are born, then 5 must die to maintain the exact balance of 500
individuals. An initial population will be created with a count equal to this
population size. The initial potential solutions that make up the initial pop-
ulation will be randomly generated. These initial random solutions will likely
not be very good. However, some of these random solutions will score better
than others.

The type of algorithm used in the program influences the population size.
The members of a population can either be competitive or cooperative. Co-
operative algorithms will typically start at a fixed size, and new members
will never be added or deleted. Competitive populations will always create
subsequent generations that are exactly made up of this fixed size. These gen-
erations are also called iterations. The next generation will be created from
children generated from only the most suitable parents. Once the next gener-
ation of a competitive population hits this maximum number of offspring, no
more children are born.

These algorithms imitate nature because populations of animals are typ-
ically both competitive and cooperative. For example, a pack of wolves will
cooperate and hunt together. Multiple wolf packs compete with each other for
scarce resources. Additionally, competition within a pack will exist for selec-
tion of the alpha male. Nature-inspired algorithms are either competitive or
cooperative; they are never implemented to be both. In this book, we will see
examples of each type of algorithm, beginning with competitive populations.
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1.1.2 Competition Among Population Members

Examples of competitive populations include genetic programming and genetic
algorithms. Both of these algorithms create populations of potential solutions.
Solutions that have better scores are more likely to be selected to mate and
provide the next generation of the population. Other than mating, no direct
cooperation occurs among the members of a competitive population.

A competitive population will always contain one or more solutions that
have the top score. In the case of a tie, there will be multiple solutions with
the top score. Another possible outcome is that the next generation may not
contain a new solution that exceeds the best score of the previous generation.
If this happens, the score for the best solution will drop, causing the training
to take a step backwards. This outcome is usually undesirable.

You can resolve this problem with elitism, a training setting that specifies
how many of the top scoring solutions are carried to the next generation.
The algorithm is guaranteed not to revert to a worse score because the elitism
setting always retains the best solution. However, it can be set to higher values
than a single solution. Such values simply specify a larger number of the top-
scoring solutions to advance to the next generation. Elitism is not the only way
to prevent the population’s top score from regressing to a lower score between
generations. This regression can occur when none of the children scores as
highly as the parents did. Tournaments can also prevent score regression.
Tournament selection will be covered later in this chapter.

1.1.3 Cooperative Among Population Members

Not all populations in AI are competitive; cooperative populations exist in AI
as well. Examples of cooperative populations include ant colony optimization
(ACO) and particle swarm optimization (PSO). In these two algorithms, the
individual potential solutions learn from each other. Information is shared
between the individuals as they seek a good solution to the assigned problem.

Cooperative populations always track the best solution that their members
have ever found. Cooperative algorithms are not greedy; they will accept a
lesser solution in their search for the best solution. Because of this charac-
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teristic, keeping track of the best solution found so far is important. This
record keeping allows you to revert to the best solution, even if the population
members have moved on to lesser solutions.

Like competitive algorithms, cooperative algorithms are also iterative. How-
ever, a single cooperative iteration does not replace the previous population
with a new generation. Iteration for a cooperative algorithm simply represents
one complete pass of each potential solution as it evaluates its effectiveness and
receives a score. At the end of each iteration cycle, all potential solutions col-
laborate and adjust their solution parameters to maximize their scores.

1.1.4 Phenotype and Genotype

Phenotype and genotype, two terms that come directly from biology, are im-
portant to some nature-inspired algorithms. A genotype is the genetic infor-
mation from which an organism grows. The phenotype is the actual organism
that results from the genotype. Identical twins are a good example of the
difference between phenotype and genotype. The same genotype is shared
by the identical twins. However, the twins mature into different people with
slightly varied physical characteristics. In AI, the same genotype grows into
two marginally different phenotypes.

Nevertheless, most evolutionary algorithms do not differentiate between
phenotype and genotype. There is no differentiation between a potential so-
lution’s genotype and the actual solution phenotype that is evaluated. There-
fore, I will follow this guideline and not differentiate between phenotype and
genotype in the evolutionary algorithms that I discuss.

One example of a nature-inspired algorithm that does differentiate geno-
type and phenotype is the HyperNEAT neural network (Stanley, 2009). Hy-
perNEAT is not a topic covered in this book; however, it is a planned topic
for Volume 3 of this series.
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1.1.5 Populations on Islands

Geographic separation can have a great impact on the evolution of natural
populations of organisms. Islands such as Tasmania, the Galapagos Islands,
and Madagascar all have very different ecological characteristics than those of
the closest mainland. Additionally, the interactions between populations on
and off the island may change over time. Islands may have once been part
of the mainland. Land bridges may come and go. These events govern the
degree of separation between individual populations.

The concept of an island can also be used in nature-inspired algorithms
to have multiple populations that are largely independent of each other, just
as real islands separate populations. The algorithm may also choose to allow
occasional interaction between the islands. This intermittent interaction is
similar to a land bridge or other geological event that allowed organisms to
travel between ecosystems.

The island concept is most commonly applied to competitive populations.
Separating potential solutions into multiple populations allows new innova-
tions to evolve without being threatened by established populations. Occa-
sional interaction can be allowed among the islands, and it permits foreign
solutions from other islands to introduce new ideas.

The multiple population concepts can also be applied to cooperative popu-
lations, which are analogous to a corporation creating multiple teams to tackle
the same problem. These teams may occasionally collaborate on an idea, but
they are largely autonomous. One could consider Xerox PARC as a separate
island from the larger Xerox. Even though PARC likely collaborates with the
greater Xerox from time to time, their separation allows them to create some
very unique solutions to computing problems.

Ultimately, the concept of multiple populations has some very practical as-
pects. It is very compatible with distributed computing. One of the most diffi-
cult aspects of any distributed computing problem is synchronization between
the individual computers that comprise the computing cluster. Because the
separate populations are inherently autonomous of each other, the algorithm
does not require synchronization, which makes the task easy to implement on
a parallel system.
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1.2 Scoring Populations

To be able to score members of a population is very valuable. The score
of a population member determines the suitability of the potential solution
represented by that population member. Most evolutionary algorithms can
either minimize or maximize a score. You need to decide if a low score or high
score is good. Some human games, such as golf, seek a minimized or low score.
Other games like football seek a maximized or high score.

Members are scored as they are added to the population. The score for a
potential solution is typically stored on the same object as the solution. This
storage location prevents the program from continually needing to recalculate
the score. Initially, you need to score each member of the random population.
If a population member changes, then its score also needs to be recalculated.
If a new population member is added, then its score needs to be determined.

The exact means by which an individual is scored depends on the type
of problem being solved. A fitness function evaluates the potential solution
and assigns a score. For example, a simple fitness function may simply com-
pare expected outputs from a model to the actual outputs obtained from the
models. Additionally, you can create more complex fitness functions that use
customized program code to evaluate a potential solution. The only require-
ment of a fitness function is that it must provide a numeric score to evaluate a
potential solution in comparison with other potential solutions. Fitness func-
tions are sometimes referred to as loss functions or objective functions.

Scoring is typically the performance bottleneck for an evolutionary algo-
rithm. Often you will need to run a lengthy data set through each new po-
tential solution added to the population. The score from this type of data set
is typically the average difference between the actual and expected outputs of
each element in the training set.
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1.3 Selecting from Populations

Selection is the process by which you select one or more potential solutions
from the population. This selection process is often called sampling. You can
choose from a variety of different selection processes. Each approach has its
own strengths and weaknesses. The most common selection algorithms include
the following:

• Truncation Selection

• Tournament Selection

• Fitness Proportionate Selection

• Stochastic Universal Sampling

These selection algorithms will be discussed in the next sections.

1.4 Truncation Selection

Truncation selection is one of the most basic selection algorithms. In his pa-
per on the Breeder Genetic Algorithm, Heinz Muhlenbein (1993) stated that
truncation selection requires that the population be sorted according to fitness.
Once sorted, some proportion (e.g., 1/3) is chosen to become the breeding pop-
ulation. Potential solutions are then sampled from the breeding population to
help produce the next generation. The exact means by which the next gener-
ation is created is discussed in Chapter 2, “Crossover and Mutation.” Figure
1.1 shows how the total population is divided by the truncation selection.
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Figure 1.1: Truncation Selection

The truncation selection algorithm can be represented by the following
pseudocode shown in Listing 1.1:

Listing 1.1: Truncation Selection Pseudocode
de f t r u n c a t e s e l e c t ( b r e e d i n g r a t i o , s o r t ed popu l a t i on )

# Sort the populat ion . For e f f i c i e n c y you should move
# this out s id e the s e l e c t i o n func t i on and perform the s o r t
# once for each batch o f s e l e c t i o n s you w i l l perform .
s o r t ( s o r t ed popu l a t i on )
# Determine the s i z e o f the breed ing populat ion .
count = len ( s o r t ed popu l a t i on ) ∗ b r e e d i n g r a t i o
# Obtain a uni formly d i s t r i b u t e d ( a l l numbers have
# equal p r o b a b i l i t y ) s i n g l e random number
# between 0 and count .
index = uniform random (0 , count )
# Return the s e l e c t e d element .
return s o r t ed popu l a t i on [ index ]

One of the biggest limitations to the truncation selection algorithm is that
the population must be sorted. This sorting severely limits the ability of the
algorithm to be parallelized for multicore and distributed computing. You
must constantly keep the entire population in a known sorted state. As a
result, this algorithm does not scale well for a large population where you
might have many different selections running in parallel.



1.5 Tournament Selection 11

Additionally, because parents only produce children and do not join the
next generation, the possibility exists that none of the children meets or ex-
ceeds the score of the best solution in the previous generation. Consequently,
you should use elitism to select one or more of the top solutions to be copied
directly to the next generation. Without elitism, your best score may decrease
between iterations.

1.5 Tournament Selection

Tournament selection is another popular selection algorithm for evolutionary
algorithms. Easy to implement, it solves the scalability issues of truncation
selection. Tournament selection works by looping through a series of rounds,
always allowing the winner to advance to the next round. The number of
rounds is a training setting. For each round, you must choose two random
individuals in the population. The better scoring individual goes onto the
next round (Miller, 1995).

Tournament selection can be used to select either fit or unfit individuals
from the population. You simply run an inverse tournament where a less fit
score wins. An example of tournament selection is shown in Figure 1.2.

Figure 1.2: Tournament Selection

For Figure 1.2, we used three rounds. For round one, we chose two members
at random. Individual #2 had the best score and went on to round two. For
round two, a new contender was chosen. Individual #20, with its score of 202
won round two and advanced to round three. For round three, Individual #20
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retained its champion status and won the entire tournament. This algorithm
is summarized in Listing 1.2.

Listing 1.2: Tournament Selection
# Perform a tournament s e l e c t i o n with the s p e c i f i e d number o f
# rounds . A high s co r e i s cons ide r ed d e s i r a b l e ( maximize )
de f tournament se l e c t ( rounds , populat ion )

# Nothing has been s e l e c t e d yet
champ = null
# Perform the rounds . There i s a ” round zero ” where the f i r s t
# contender i s chosen becomes the champ by default .
for x from 0 to rounds :

# Choose a random contender from the populat ion .
contender = uniform random ( populat ion )

# I f we do not yet have a champ ,
# then the cur rent contender i s the champ by default .
i f champ i s null :

champ = contender
# I f the contender has a b e t t e r score , i t i s the new champ .
else i f contender . s c o r e > champ . s co r e :

champ = contender

return champ

As you can see from the above code, no sorting was required. You can also
create an inverse selection by flipping to a ”less than” operator to a “greater
than” operator.

Using tournament selection also allows you to break the typical genera-
tional model that evolutionary operators often use. Breaking the generational
model offers great efficiencies for parallel processing. The lack of a generational
model is also closer to biology. Since babies are born every day, we don’t have a
clearly defined moment for the beginning and ending of one human generation.
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To abandon the generational model, use tournament selection and choose
two fit parents that will produce a child. To choose an unfit population mem-
ber, run a reverse tournament. The unfit population member is killed and
replaced by the new child. This truncation model eliminates the need for
elitism. The best solution will never be replaced because a reverse tourna-
ment will never select it.

This algorithm is very efficient for parallel processing. The parallel pro-
cessing loop might look something like Listing 1.3.

Listing 1.3: Parallel Evolutionary Algorithm
best = null
r e q u i r e d s c o r e = [ the s co r e you want ]
# Loop so long as we e i t h e r do not yet have a best ,
# or the best . s c o r e i s l e s s than r e q u i r e d s c o r e .
p a r a l l e l while best i s null or bes t . s c o r e < r e q u i r e d s c o r e :

# Lock , and choose two parents . We do not want changes
# to the populat ion while p i ck ing the parents .
l o ck :

parent1 = tournament se l e c t (5 , populat ion )
parent2 = null

# Pick a second parent .
# Do not s e l e c t the same i n d i v i d u a l for both parents .
while parent2 == null or parent1 == parent2 :

parent2 = uniform random ( populat ion )
# Parents are chosen , so we can e x i t the lock
# and use c r o s s o v e r to c r e a t e a c h i l d .
c h i l d = c r o s s o v e r ( parent1 , parent2 )
c h i l d . s c o r e = sco r e ( c h i l d )
# we must now choose ( and k i l l ) a v ic t im .
# The vic t im i s r ep laced by the new c h i l d .
l o ck :

v i c t im = r e v e r s e s e l e c t (5 , populat ion )
populat ion . remove ( v ic t im )
populat ion . add ( c h i l d )

# See i f the c h i l d i s the new best .
i f c h i l d . score >best . s c o r e

best = c h i l d

The above code includes two locked sections. A single thread will only execute
one locked section at a time. Other threads must wait when a thread is inside
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the locked area. For efficiency purposes, code inside a locked section should be
optimized to execute very quickly. The first lock simply chooses two parents.
The time-consuming part will be scoring the child. The child is created and
scored outside of any locks. This method is good because nothing needs to
wait on the scoring. It is always good practice to keep time-consuming code
outside of locks. The final lock chooses a victim and inserts the child. We also
track the best solution found so far.

You might have noticed the crossover function above. Crossover is one
of several methods for adding new members to the population. Crossover will
be discussed in Chapter 2.

Tournament selection is also biologically plausible. To survive to the next
day, an individual does not need to be able to outrun the fastest predator
in the population. The individual only needs to outrun the predators that it
encounters on any given day.

1.6 How to Choose Round Count

The number of rounds is a training setting, just like population count. Even
though training settings are not part of the final solution, they will affect how
quickly you find an adequate solution. Typically, training settings are set
through trial and error. I usually start with a population size of 1,000 and a
round count equal to 5.

Because I wanted to see how round count affected the score of the individ-
ual selected, I ran a small experiment on them to determine their influence. I
created a population of 1,000 individuals; each individual had a score between
0 and 999, depending on its position in the list. I then performed tournament
selection 100,000 times on the population and returned the average score se-
lected. The goal was to have the tournament selection return fit individuals.
As you can see, as the number of rounds increased, so did the average score.

Rounds : 1 , Avg Score : 665
Rounds : 2 , Avg Score : 749
Rounds : 3 , Avg Score : 799
Rounds : 4 , Avg Score : 832
Rounds : 5 , Avg Score : 857
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Rounds : 6 , Avg Score : 874
Rounds : 7 , Avg Score : 888
Rounds : 8 , Avg Score : 899
Rounds : 9 , Avg Score : 908
Rounds : 10 , Avg Score : 915

Obviously, we want fit individuals to be selected. I found a round count of 5 to
be a good tradeoff since it was close to the 90th percentile and not an excessive
number of rounds. Nevertheless, even though the rounds are computationally
cheap, we do not always want to choose parents in the top 1%. We do want
to encourage some variety.

1.7 Fitness-Proportionate Selection

Fitness-proportionate selection, also known as roulette wheel selection, is a
popular selection method for evolutionary algorithms (Back, 1995). This tech-
nique resembles a roulette wheel as individuals occupy a section of the roulette
wheel that is proportional to the desirability of their score. When one spins
the roulette wheel, more desirable individuals have a greater likelihood of se-
lection. Figure 1.3 shows how you might visualize this type of roulette wheel.

Figure 1.3: Fitness-Proportionate Selection

The above diagram shows how scores of 20, 30 and 50 are distributed
around the wheel. A score of 50 has a 50% chance of being selected. The
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scores do not necessarily need to align to even percentage numbers. The
proportions will simply adjust to the sum of the scores. Fitness proportionate-
selection could allow the least fit individual to be chosen. Yet tournament or
truncation selection would never choose the least fit individual. This selection
process is not necessarily bad. Diversity in the selection process sometimes
creates interesting results since it allows new ideas to enter the population.

Several different implementations of the fitness-proportionate algorithms
exist. All such selection algorithms will either require access to the entire
population, or they need to sort the population. This algorithm makes fitness-
proportionate selection undesirable from a parallelization standpoint. Sorting
or summing the entire population is difficult when running in parallel.

Listing 1.4 shows a pseudocode implementation of fitness-proportionate
selection.

Listing 1.4: Fitness-Proportionate Selection
# S e l e c t an i n d i v i d u a l us ing f i t n e s s−proport ion s e l e c t i o n
de f f i t n e s s p r o p o r t i o n s e l e c t ( populat ion )

# Calcu la te the t o t a l score , so that propor t i ons
# can be determined .
t o t a l s c o r e = 0
for i n d i v i d u a l in populat ion :

t o t a l s c o r e = t o t a l s c o r e + i n d i v i d u a l . s c o r e

r = random uniform (0 , 1 )

# Spin through the areas on the wheel u n t i l we pass po int ” r ” .
c o v e r e d s o f a r = 0
for i n d i v i d u a l in populat ion :

c o v e r e d s o f a r = c o v e r e d s o f a r +
( i n d i v i d u a l . s c o r e / t o t a l s c o r e )

# Have we covered the random point ( r ) yet ?
i f r<c o v e r e d s o f a r :

return i n d i v i d u a l

# Should not ever happen .
return null
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The above algorithm first calculates the sum of all of the scores. This
process allows us to calculate the percentage of the wheel that each individual
score covers. The calculation required is a simple percent calculation. We
then generate a random number in the range between 0 and 1. We now start
at 0 and begin adding the size of each population member to the sum. Once
the sum exceeds the previously generated random number, we have found the
part of the wheel that contains our random number. Larger areas of the wheel
have a higher probability of being selected. Fitness-proportionate selection
can have bad performance when a member of the population has a really large
score in comparison with other members. This type of individual will dominate
selection.

1.8 Stochastic Universal Sampling

Whereas fitness-proportionate selection utilizes repeated random selection to
choose several individuals from the population, James Baker (1987) introduced
stochastic universal sampling (SUS) to use a single random value to sample
the number of requested individuals. These individuals are selected at evenly
spaced intervals. This type of selection gives weaker (according to their fitness)
members of the population a chance to be chosen and thus reduces the unfair
nature of fitness-proportionate selection.

Figure 1.4 graphically shows how stochastic universal sampling works.

Figure 1.4: Stochastic Universal Sampling

One very important difference between stochastic universal sampling and
the selection methods previously seen is that SUS works best when you select
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all of the needed individuals at the same time. The previous selection methods
choose individuals separately. The above figure illustrates the selection of 4
individuals from the population. You will notice that individual #1 is selected
twice, then individual #2 and finally individual #4. We are requesting 4
individuals from a population size of 5, so receiving a single individual multiple
times is a possible outcome.

The line at the bottom of Figure 1.4 shows the individuals being selected
at regular intervals. The leftmost position of the line is the only random
number generated. It is generated between 0 and the length of each line
segment. The line segments are all equal to f/N (total fitness divided by
number of individuals requested). Once this initial random point is selected,
each additional individual is selected by moving forward.

Listing 1.5 shows the pseudocode needed to implement stochastic universal
sampling.

Listing 1.5: Stochastic Universal Sampling (SUS)
# N i s the number o f i n d i v i d u a l s to s e l e c t .
de f s t o c h a s t i c u n i v e r s a l s a m p l i n g ( populat ion , N)

# Calcu la te the t o t a l s co r e o f the populat ion .
f = 0

# Add up i n d i v i d u a l s c o r e s .
for i n d i v i d u a l in populat ion :

f = f + i n d i v i d u a l . s c o r e

# Calcu la te the d i s t ance between the p o i n t e r s .
p = f /N

# Choose random number between 0 and p
s t a r t = random uniform (0 , p)

# Def ine po in t s
po in t s = [ ]
for i from 0 to (N−1) :

po in t s [ i ] = s t a r t + ( i ∗p)

# Perform bas i c r o u l e t t e wheel s e l e c t
s e l e c t e d = [ ]
i = 0
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# Loop over po in t s
for p in po in t s :
while populat ion [ i ] . s c o r e < p :

i = i + 1
s e l e c t e d . add ( populat ion [ i ] )

# Return s e l e c t e d i n d i v i d u a l s
return s e l e c t e d

As you can see, SUS starts by calculating the total score of the population.
SUS also requires that the population be sorted, as in Figure 1.4, due to the
high probability that the algorithm will choose the most prevalent individuals
regardless of the order (Baker, 1987). Although SUS is useful in situations
where a few highly scored individuals are dominating fitness-proportionate
selection, this algorithm does not work as well with large data and highly par-
allelized situations. Tournament selection is a good alternative when a single
high-scoring individual is dominating selection. Tournament selection will not
be dominated because each individual has an equal chance of entering the
tournament. SUS might pick extremely weak individuals, but they will always
be eliminated in tournaments. This outcome may or may not be desirable.

1.8.1 Choosing a Selection Algorithm

With several selection algorithms available, you might wonder which one to
choose. I almost always use tournament selection because it is extremely fast
and scalable. The main downside to tournament selection is that very weak
individuals will often be eliminated before they have a chance to refine and
adapt through a few generations. This outcome can cause stagnation in the
best scores obtained by the population.

If you are not using speciation, and your population is still stagnating, you
might want to try stochastic universal sampling. This choice will allow weaker
members to be chosen some of the time. If performance becomes an issue, you
can disable the sort. You still have to track total fitness of the population.
However, total fitness can be calculated once and then adjusted as members of
the population are born and die. These tweaks can make stochastic universal
sampling quite scalable and parallelizable.
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1.9 Chapter Summary

This chapter introduced populations and selections. A population is a group
of potential solutions to a problem. Populations can be either collaborative
or competitive, depending on the evolutionary algorithm that is in use. The
population progresses through iterations and slowly refines its solution to a
problem.

A collaborative population is a group of a certain number of individuals
that work together on a problem. Ant colony optimization (ACO) and particle
swarm optimization (PSO) are two examples of collaborative algorithms. In
both of these cases, the individuals work together and share information to
find better solutions to the problem being studied.

A competitive population pits members against each other. Survival of the
fittest plays out, and only the best individuals become parents. This behavior
allows them to impart their traits to the next generation. In the end, the
individual with the best score becomes the final solution to the problem.

Scoring is the process where numeric scores are assigned to individuals in
the population. The objective might be a low or high score. Some algorithms
require the population to be sorted according to the score. Such algorithms do
not scale well and are difficult to adapt for parallel processing and distributed
computing.

Selection is the process by which individuals are chosen from the popu-
lation to help create the next generation. Truncation selection is a simple
algorithm that randomly selects an individual from a definable top percent-
age of the population. Tournament selection takes the top individual from
a group randomly selected from the population. Fitness-proportionate selec-
tion, or roulette wheel selection, randomly chooses an individual based on its
score. Stochastic universal sampling selects individuals at regular intervals.
Tournament selection is the best general-purpose selection algorithm.

In conclusion, this chapter focused on how to select individuals so they can
bestow their attributes to the next generation. In Chapter 2, I will introduce
crossover and mutation in order to describe how the chosen individuals actually
affect and produce the next generation.
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Chapter 2

Crossover and Mutation

• Evolutionary Algorithms

• Splice Crossover

• Repeating Genes

• Shuffle Mutation

• Perturb Mutation

Chapter 1 introduced populations and showed the selection process of suitable
parents. Once the selection process chooses the most favorable parents, spe-
cific algorithms are required in order to cause those parents to produce the
next generation. These evolutionary algorithms are essential components in
competitive populations. In fact, they represent the only way that the popu-
lation adds new individuals. This book deals with three different types:

• Elitism

• Mutation

• Crossover
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Broadening the first chapter’s treatment of these topics, Chapter 2 will demon-
strate how an evolutionary algorithm employs elitism, mutation, and crossover
to create successive generations of solutions. Ideally, each subsequent genera-
tion will improve upon the previous generation.

2.1 Evolutionary Algorithms

Many different evolutionary algorithms exist, and the majority of them utilize
evolutionary operators such as fitness functions, selection, elitism, crossover,
and mutation. Depending on the evolutionary algorithm that you choose, the
implementation of these evolutionary operators varies. Later chapters will
explain in more detail the following evolutionary algorithms:

• Genetic Algorithms (GA)

• Genetic Programming (GP)

• Human Based Genetic Algorithm (HBGA)

• Ant Colony Optimization (ACO)

• Particle Swarm Optimization (PSO)

Figure 2.1: Evolutionary Algorithms
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The above diagram illustrates the connections among the evolutionary algo-
rithms presented in this book. Dotted lines enclose the ovals of evolutionary
algorithm and swarm intelligence to indicate that they represent abstract types
of algorithms, not actual ones.

The algorithms in Figure 2.1 have many commonalities. Every algorithm
in the diagram is population based, and they all deal with populations of
potential solutions that must be scored. In other words, you will always use
some type of scoring function with an evolutionary algorithm.

Some of the algorithms use competitive populations. Genetic program-
ming, genetic algorithms, and human-based genetic algorithms use compet-
itive populations. As a result, they will utilize the elitism, mutation, and
crossover. The configuration settings determine the degree to which you use
these algorithms. Additionally, the population size is usually fixed. In short,
competitive evolutionary algorithms use four configuration settings that are
listed below with their common default values:

• Population Size: 1,000

• Elitism Count: 3

• Crossover Percent: 0.8

• Mutation Percent: 0.2

The above settings are a good starting point for evolutionary algorithms. The
elitism value of 3 indicates that we will always copy the top three individuals
to the next generation. The crossover and mutation percent values define
the ratio that is necessary to create the next generation. This ratio means
that 80% of the individuals chosen to move to the next generation will be a
combination of parameters from two selected parents, and 20% will be copies
of only one parent with a small number of random parameter changes. Of
course, the crossover and mutation percent values must sum to 1.0.
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2.2 Solution Encoding

Thus far, we have examined populations of potential solutions. Now, we need
to explain what a solution actually resembles. Most evolutionary algorithms
require that the potential solutions be fixed-length arrays. Each solution must
have the same array length as the other solutions. Genetic algorithms follow
this guideline even though it may seem limiting. One of the most challeng-
ing aspects of using an evolutionary algorithm is representing solutions as
fixed-length arrays. Therefore, Chapter 3, ”Genetic Algorithms,” will include
examples of representing several solutions as fixed-length arrays.

Determining the nature of the data in your fixed-length array is essential.
If your array is numerical, or continuous, then each array element represents a
floating-point number. Values such as percentages, order quantities or salaries
are examples of numeric values. If you are dealing with integer values such as
order quantities, you will need to make sure that your mutation and crossover
functions respect the integer nature of your numbers.

If your values are categorical, then they are discrete values, such as employ-
ees, cities, building components, or ingredients. Values that are not numerical
will affect the way that you mutate this type of array. The next section in-
cludes an analysis of these arrays.

In an evolutionary algorithm, using structures of variable length as your
solutions is possible. However, you’ll have to design your own crossover and
mutation operators if you use variable-length structures. We will see an exam-
ple of variable-length structures in Chapter 4, ”Genetic Programming.” As we
will evolve equations using genetic programming, the length of the equations
will certainly vary.
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2.3 Mutation

Mutation in evolutionary algorithms differs considerably from the biological
concept of mutation. A biological mutation is a change in an organism’s DNA
sequence that can be beneficial or harmful. It is typically caused by radia-
tion or a chemical reaction. Mutation in evolutionary algorithms is asexual
reproduction. In other words, mutation is a way to create a child based on the
traits of only one parent.

Mutation allows the potential solution to produce a slightly refined child
in the next generation. Because the possibility exists that the potential so-
lution is already optimal, it receives only a few refinements from the parent.
These changes to the child are mutation. They are usually random. This is
different from nature, where an existing organism experiences the mutation.
For evolutionary organisms, mutation is simply a form of reproduction.

Individuals in evolutionary algorithms that reproduce both sexually (crossover)
and asexually (mutation) are very common. Many organisms in nature also
reproduce both sexually and asexually, including aphids, slime molds, sea
anemones, and many plants. Because the animal or plant has just one parent,
mutation represents the only way that the offspring can vary from the parents.

Mutation and crossover are both essential parts of evolutionary algorithms.
Crossover recombines the traits of the best solutions; however, crossover can-
not introduce new traits. Mutation is the process in which completely new
traits are introduced into the potential solutions. Used together, crossover and
mutation allows new traits to be discovered and subsequently crafted into new
solutions.

In the next few sections, we will examine the ways that nature-inspired
algorithms implement mutation. As previously discussed, when choosing a
mutation algorithm, you must consider if your solution array is numerical or
categorical. However, if your solution array is both numerical and categorical,
you will likely need to create your own mutation operator that is a hybrid of
the algorithms presented in the next sections. The first hybrid we will study
is shuffle mutation.
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2.3.1 Shuffle Mutation

Shuffle mutation can be used with both categorical and numeric solution ar-
rays. Although shuffle mutation is flexible enough to be used for either solu-
tion array type, it is rarely used with numeric solution arrays (Mitchell, 1998)
because shuffle mutation is simply changing the order of the solution array.
Shuffle mutation does not change the actual values in the array. To under-
stand this idea, consider if we had a parent solution array that held the values
1 through 5.
Parent : [ 1 , 2 , 3 , 4 , 5 ]

A shuffle mutation usually works by performing one or more random flips
of two array components. After a shuffle mutation, the above parent might
produce the following offspring:
Of f sp r ing : [ 1 , 5 , 3 , 4 , 2 ]

As you can see from the above offspring, we flipped the second and fifth posi-
tions. If you have very large solution arrays, you might want to flip positions
more than one time. However, you do not want to flip them too many times
because the offspring must bear some resemblance to the parent. Otherwise,
you are randomly searching for better solutions. Another important consider-
ation is that the mutation operation does not change the parent. In fact, the
only purpose of mutation is creating a descendant.

Listing 2.1 shows the pseudocode for shuffle mutation.

Listing 2.1: Shuffle Mutation
# S h u f f l e mutate the s p e c i f i e d parent ” f l i p s ” number o f t imes .
sub shu f f l e muta t e ( parent , f l i p s )

# Create the o f f s p r i n g
o f f s p r i n g = c lone ( parent )
# Perform the reques ted number o f f l i p s
for i from 1 to f l i p s :

# Perform the f l i p , convert random num to an int
index1 = int ( random uniform (0 , l en ( parent )−1) )
index2 = −1
# Choose a second index that i s d i f f e r e n t than the f i r s t .
# We do not want to swap the same index .
while index2==−1 or index1==index2 :
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index2 = int ( random uniform (0 , l en ( parent )−1) )

# Perform the swap .
temp = o f f s p r i n g [ index1 ]
o f f s p r i n g [ index1 ] = o f f s p r i n g [ index2 ]
o f f s p r i n g [ index2 ] = temp

return o f f s p r i n g

As you can see from this code, we simply choose two elements and flip them.
However, we have to ensure that the two indexes are not identical. If we
did not perform this check, the children would often be exact clones of the
parent. Because cloning is not the purpose of mutation, swapping the same
index should be avoided.

The above function does not guarantee that multiple flips will be unique.
Using two flips could result in a clone. For example, the first flip might choose
to flip indexes #3 and #5. If the second flip also chooses these same indexes,
the second flip will undo the first. Thus, the child that results from these flips
is identical to the parent. In terms of algorithm speed to find a high score, I
have discovered that additional checking does not cause any significant gains.
As a result, I typically use only a single flip. The problem of parent cloning is
not worth the additional memory and complexity of tracking each flip.

2.3.2 Perturb Mutation

Perturb mutation works well with numeric solution arrays but is completely
incompatible with categorical arrays. Perturb mutation is implemented by
randomly increasing or decreasing each numeric value in the array. A con-
figuration variable is provided for perturb mutation to specify the degree of
randomness to apply to each array member (Mitchell, 1998).



30 Crossover and Mutation

Consider the following parent solution:
Parent : [ 1 . 0 , 2 . 0 , 3 . 0 , 4 . 0 , 5 . 0 ]

Running the above parent through a perturb mutation could produce the fol-
lowing offspring:
Of f sp r ing : [

1 .0421760973088268 ,
1 .8180609054044645 ,
2 .985473376997353 ,
4 .235569162430029 ,
4 .87239116615422 ]

As you can see in the previous figures, we added a random amount of noise
to each number because the basic series from the parent is still evident. Each
number increased or decreased by a relatively small random amount. Listing
2.2 shows the pseudocode that implements perturb mutation.

Listing 2.2: Perturb Mutation
sub perturb mutate ( parent , perturb amount ) :

# Copy the parent to the c h i l d .
c h i l d = c lone ( parent )

# Loop over and mutate each element in the c h i l d .
for i from 0 to l en ( parent )−1:

va lue = parent [ i ]
# Mutate by an amount that i s p ropo r t i ona l to the value
# in the parent .
d e l t a = value ∗

random uniform(−perturb amount , perturb amount )
c h i l d [ i ] = c h i l d [ i ] + de l t a

return c h i l d

The code in Listing 2.2 shows the process. First, copy the parent to the child.
Then mutate each element in the child by an amount equal to the current value
scaled by a random percent in the range from negative perturb amount to
positive perturb amount. Make sure to consider the current value of the
array so as not to apply a value that is disproportionally too large or small.
For example, if we were to use a perturb amount of 0.5, and the current
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value of the array element is 10, we would generate a random number in the
range between -0.5 and 0.5. This random number would be multiplied by the
current value 10, giving a value in the range -5 to 5. Adding this figure to the
value of 10 means that the child could end up in the range 5 to 15.

Many different implementations exist for perturbing mutation. Some other
variations include the following:

• Perturb using a range equal to the normal distribution with the standard
deviation as a training setting.

• Provide a probability that each element is perturbed, rather than per-
turbing every element.

• Randomly select an array element and perturb just that element.

Generally, I use a perturbing system like the pseudocode provided in Listing
2.2. Scaling to the current value of the array value is very useful in later
training when the changes to the array become smaller as we are ideally nearing
an optimal solution.

2.4 Crossover

Crossover allows sexual reproduction in evolutionary algorithms. In nature,
crossover occurs when a single male and female mate and produce offspring.
Hermaphrodite organisms, such as snails, can play the role of either mother
or father. Crossover in nature-inspired algorithms differs considerably from
crossover in nature. Most evolutionary algorithms permit any individual to
perform crossover with any other individual since the solutions that you are
evolving do not have genders. In other words, mothers and fathers do not exist
in crossover. Therefore, selecting a male and female individual for crossover is
not necessary.

Even though most crossover implementations have two parents, this setup
is not a strict requirement. I first saw an algorithm that used groups of more
than two parents in the article, Genetic Algorithms–Useful, Fun and Easy by
David Snell (2013).
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In short, programmers can implement crossover in many ways. The next
chapter will highlight some of these applications.

2.4.1 Splice Crossover

Both numeric and categorical data use splice crossover. It works by taking
two parents and producing two children (Mitchell, 1998). The parents are
split according to two cut points, and this split produces three sub-arrays for
each parent that are subsequently spliced together to produce two children.
Each child gets one sub-array from one parent and two sub-arrays from the
other parent. You can see this split in Figure 2.2.

Figure 2.2: Splice Crossover

The program selects two random cut points, as can be seen above. The
program chooses the first cut point randomly. Adding the cut length to the
first cut chooses the second cut point. The cut length is a training setting that
defines the length of the middle cut section, and it remains constant during
the evolutionary algorithm.
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Now, we will explain how an actual array is processed with splice crossover.
Consider two parents, labeled parent 1 and parent 2:
Parent 1 : [ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 ]
Parent 2 : [ 1 0 , 9 , 8 , 7 , 6 , 5 , 4 , 3 , 2 , 1 ]

Splice crossover would create two offspring from the parents listed above when
the cut points are after the 3rd and 9th elements.
Of f sp r ing 1 : [ 1 , 2 , 3 , 7 , 6 , 5 , 4 , 3 , 2 , 10 ]
O f f sp r ing 2 : [ 1 0 , 9 , 8 , 4 , 5 , 6 , 7 , 8 , 9 , 1 ]

As you can see, both offspring contain elements from each of the parents. You
may also have noticed that parents 1 and 2 have no repeating numbers within
their respective arrays. Because the two offspring took random splices from
both parents, this process introduced repeats to the children. Furthermore,
the complete set of numbers is no longer present in either child. This result
might not be a problem if you are trying to optimize the order of a series of
objects. Nevertheless, these repeats will likely cause issues in the solution.

In the next section, you will observe a demonstration of a non-repeating
version of splice crossover. Listing 2.3 shows the pseudocode that implements
the splice crossover operator that allows repeating.

Listing 2.3: Splice Crossover
sub s l i c e c r o s s o v e r ( parent1 , parent2 , cu t l eng th ) :

# Al l o ca t e two c h i l d ar rays . Same length .
o f f s p r i n g 1 = a l l o c ( l en ( parent1 ) )
o f f s p r i n g 2 = a l l o c ( l en ( parent1 ) )
# The array must be cut at two p o s i t i o n s , determine them .
cutpo int1 = int ( random uniform ( l en ( parent1 ) − cu t l eng th ) )
cutpo int2 = cutpo int1 + cut l eng th

# Handle the middle s e c t i o n .
for i from 0 to l en ( parent1 )−1:

i f ( i >= cutpo int1 ) and ( i < cutpo int2 ) :
o f f s p r i n g 1 [ i ] = parent2 [ i ]
o f f s p r i n g 2 [ i ] = parent1 [ i ]

# Handle outer s e c t i o n s .
for i from 0 to l en ( parent1 )−1:

i f ( i < cutpo int1 ) or ( i >= cutpo int2 ) :



34 Crossover and Mutation

o f f s p r i n g 1 [ i ] = parent1 [ i ]
o f f s p r i n g 2 [ i ] = parent2 [ i ]

# Return the two c h i l d r e n as an array .
return [ o f f s p r i n g 1 , o f f s p r i n g 2 ]

The next section demonstrates a version of the splice crossover that does not
allow repeating.

2.4.2 No Repeat Splice Crossover

Performing a crossover operation while not allowing any repeating entries in
the child can be important. Nevertheless, this consideration does not apply to
the shuffle mutate operator. Because the shuffle mutate operator is working
with a single parent, the operator will not introduce any repeats that do not
already exist.

The non-repeating version of the splice crossover operator works very simi-
larly to the repeating version. The only difference is that the crossover operator
keeps a list of elements that are already used.

To see the results of the non-repeating version of the splice operator, con-
sider the following two parents:
Parent 1 : [ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 ]
Parent 2 : [ 1 0 , 9 , 8 , 7 , 6 , 5 , 4 , 3 , 2 , 1 ]

This splicing results in the following two offspring when used with cut points
after elements 1 and 7:
Of f sp r ing 1 : [ 1 , 9 , 8 , 7 , 6 , 5 , 4 , 2 , 3 , 10 ]
O f f sp r ing 2 : [ 1 0 , 2 , 3 , 4 , 5 , 6 , 7 , 9 , 8 , 1 ]

As you can see, the repeating elements are not in the offspring. Addition-
ally, each offspring still has a complete set of the numbers from both parents.
Listing 2.4 contains the pseudocode to create a non-repeating splice crossover
operator.
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Listing 2.4: Splice Crossover (non-repeating version)
# Find unused elements in a l i s t , and mark them used .
sub f ind unused ( source , used ) :

for x in source :
i f not x in used :

used [ x ] = 1
return x

# Should not happen , we ran out o f e lements .
return −1

sub s l i c e c r o s s o v e r n r ( parent1 , parent2 , cu t l eng th ) :
# Al l o ca t e two c h i l d ar rays . Same length .
o f f s p r i n g 1 = a l l o c ( l en ( parent1 ) )
o f f s p r i n g 2 = a l l o c ( l en ( parent1 ) )

# Two maps to hold a l r eady used l i s t
used1 = {}
used2 = {}

# The array must be cut at two p o s i t i o n s , determine them .
cutpo int1 = int ( random uniform ( l en ( parent1 ) − cu t l eng th ) )
cutpo int2 = cutpo int1 + cut l eng th ;

# Handle the middle s e c t i o n .
for i from 0 to l en ( parent1 )−1:

i f ( i >= cutpo int1 ) and ( i < cutpo int2 ) :
o f f s p r i n g 1 [ i ] = parent2 [ i ]
o f f s p r i n g 2 [ i ] = parent1 [ i ]
used [ o f f s p r i n g 1 [ i ] = 1
used [ o f f s p r i n g 2 [ i ] = 1

# Handle outer s e c t i o n s .
for i from 0 to l en ( parent1 )−1:

i f ( ( i < cutpo int1 ) or ( i >= cutpo int2 ) ) :
o f f s p r i n g 1 [ i ] = f ind unused ( parent1 , used1 )
o f f s p r i n g 2 [ i ] = f ind unused ( parent2 , used2 )

# Return the two c h i l d r e n as an array .
return [ o f f s p r i n g 1 , o f f s p r i n g 1 ]

This code is very similar to the repeating version. The primary difference is
the addition of the function find unused and the two maps or dictionaries
that hold a list of the elements that each child uses.
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2.4.3 Other Mutation and Crossover Strategies

The algorithms provided in this chapter assume that the array lengths are
fixed. This characteristic serves as a convenience rather than as a requirement
of evolutionary algorithms. If you would like to use arrays of different lengths,
you must implement your own crossover and mutation operators. However,
you will need to perform these operations in a manner that maintains the
integrity of your solutions.

Mutation tends to be an easier operation for solution arrays with differing
lengths. Because mutation is asexual, you do not need to worry about how to
manage two solutions of differing lengths. To achieve the mutation, you just
need to design the mutation operator so that it can handle arrays of variable
length.

Crossover becomes much more complex when handling differing solution
array lengths. Producing a viable offspring array might be very difficult when
performing crossover between an array of size 10 and another solution of size
10,000. Biology also has this issue. Producing viable offspring between a whale
and plankton would also be difficult. Chapter 5, ”Speciation,” will introduce
some techniques to keep incompatible individuals from attempting crossover.

NEAT, HyperNEAT and HyperNEAT ES are all examples of variable-
length models that can still perform crossover (Stanley, 2009). The NEAT
variants use speciation to accomplish crossover. Additionally, they employ
an innovation table to allow mapping between common parts of the differing
length solution array. Genetic programming utilizes trees to encode solutions.
Ultimately, cutting and grafting sections of the trees brings crossover to com-
pletion (Koza, 1992).
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2.5 Why is Elitism Necessary?

I will now show you an example of what can happen without elitism, a con-
figuration setting that specifies how many of the top scoring members of a
population should be passed directly into the next generation. Elitism pre-
vents the best score from going backwards. I will show an example where the
top score for a population decreases between generations 100 and 101. This
can be seen in Figure 2.3.

Figure 2.3: Score Degrades without Elitism

As you can see from the diagram, we cover generations 100 to 101. In the
process, we can observe several developments. The selection algorithm did
not pick individuals #3 and #4 for either mutation or crossover. As a result,
individuals #3 and #4 did not contribute to the next generation. Their low
scores most likely factored in their omission. Individual #2 demonstrated that
monogamy typically does not exist in evolutionary algorithms. It mated with
several different individuals and produced several offspring in generation 101.
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Unfortunately, despite all the sexual and asexual births that resulted from
generation 100, no children could beat individual #2’s score of 75. The new
best score was 74. Copying individual #2 to the next generation at the outset
could have prevented this dismal outcome. Elitism is the action of making
that copy.

2.6 Chapter Summary

This chapter presented three fundamental evolutionary operators: crossover,
mutation, and elitism, which are the only ways that the next generation adds
new members. Elitism essentially clones a highly scored individual for the
next generation. Mutation asexually creates a new organism that is a slight
alteration of the parent. Crossover uses sexual reproduction to create offspring
that share traits of the parents.

You can implement mutation and crossover in many ways. When choosing
an algorithm, you need to consider the length of your solution array. If it is
variable, then you have to implement specialized versions of crossover and mu-
tation. You must also determine if your solution array’s values are numerical,
categorical, or a mix of the two.

The last two chapters introduced you to the building blocks of evolutionary
algorithms. In Chapter 1, you learned how algorithms create, score, and select
populations. This chapter showed you how to create new population individ-
uals using highly scored individuals. The next chapter will show you how to
put these concepts all together to create an actual evolutionary algorithm.
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Chapter 3

Genetic Algorithms

• Discrete Problems

• Traveling Salesman Problem (TSP)

• Continuous Problems

The first two chapters of this book defined evolutionary algorithms in a some-
what abstract sense. Scoring, selection, populations, crossover, and mutation
are all critical features of evolutionary algorithms. However, we have yet to
incorporate all of these features into a concrete algorithm.

Genetic algorithms are a special class of evolutionary algorithm. However,
definitions vary in the body of literature that describes them. This book defines
a genetic algorithm as an evolutionary algorithm that optimizes a fixed-length
vector using the operators of crossover and mutation. A scoring function can
then distinguish superior from inferior solutions in order to optimize the fixed-
length array. This definition illustrates the essence of a genetic algorithm.

Furthermore, optional features can be added to genetic algorithms in an
effort to enhance their performance. Additional techniques like speciation,
elitism, and other selection methods can sometimes improve the operation of
a genetic algorithm.
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3.1 Genetic Algorithms for Discrete Problems

Similar to other algorithms, genetic algorithms employ slightly different ap-
proaches for continuous and discrete learning. Continuous learning deals with
calculating numeric values, whereas discrete learning deals with recognizing
non-numeric values. I will show you how to apply these two classic AI prob-
lems for discrete and continuous learning:

• Traveling Salesman Problem

• Iris Species Modeling

The traveling salesman problem (TSP) will show how to apply a genetic al-
gorithm to a discrete combinational problem–the goal is to find an optimal
sequence of cities. Fitting the weights of an RBF neural network for iris flower
species identification will serve as the continuous problem example–the nu-
meric weights will be adjusted.

3.1.1 The Traveling Salesman Problem (TSP)

This problem involves determining the shortest route for a traveling salesman
who must visit a certain number of cities. Although he can begin and end in
any city, he may visit each city only once. The TSP has several variants, some
of which allow multiple visits to cities or assign different values to cities. The
TSP in this chapter simply seeks the shortest possible route to visit each city
one time. Figure 3.1 shows the TSP problem featured in Chapter 3 as well as
the shortest route.
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Figure 3.1: The Traveling Salesman

Finding the shortest route may seem like an easy task for a normal iterative
program. However, as the number of cities increases, the number of possible
combinations increases drastically. If the problem has one or two cities, only
one route is possible. If it includes three cities, the possible routes increase to
six. The following list shows how quickly the number of paths grows:
1 c i t y has 1 path
2 c i t i e s have 2 path
3 c i t i e s have 6 paths
4 c i t i e s have 24 paths
5 c i t i e s have 120 paths
6 c i t i e s have 720 paths
7 c i t i e s have 5 ,040 paths
8 c i t i e s have 40 ,320 paths
9 c i t i e s have 362 ,880 paths
10 c i t i e s have 3 ,628 ,800 paths
11 c i t i e s have 39 ,916 ,800 paths
12 c i t i e s have 479 ,001 ,600 paths
13 c i t i e s have 6 ,227 ,020 ,800 paths
. . .
50 c i t i e s have 3 .041 ∗ 10ˆ64 paths

In the above table, the formula to calculate total paths is the factorial. The
number of cities, n, is calculated using the factorial operator (!). The factorial
of some arbitrary value n is given by n * (n - 1) * (n - 2) * ... * 3 * 2 * 1.
These values become incredibly large when a program must do a brute-force
search. The travelling salesman problem is an example of a non-deterministic
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polynomial time (NP) hard problem. Informally, NP-hard is defined as any
problem that lacks an efficient way to verify a correct solution. The TSP fits
this definition for more than 10 cities. A formal definition of NP-hard can be
found in the book Computers and Intractability: A Guide to the Theory of
NP-Completeness (Garey, 1979).

Dynamic programming is another common approach to the traveling sales-
man problem, as seen in xkcd.com comic in Figure 3.2.

Figure 3.2: The Traveling Salesman (from xkcd.org)

Although this book does not include a full discussion of dynamic program-
ming, understanding its essential function is valuable. Dynamic programming
breaks a large problem, like the TSP, into smaller problems. Work can be
reused for many of the smaller programs, thereby decreasing the amount of
iterations required by a brute-force solution.

Unlike brute-force solutions and dynamic programming, a genetic algo-
rithm is not guaranteed to find the best solution. Although it will find a good
solution, the score might not be the best. The sample program examined in the
next section shows how a genetic algorithm produced an acceptable solution
for the 50-city problem in a matter of minutes (Behzad, 2002).
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3.1.2 Designing a Genetic Algorithm for the TSP

TSP is one of most famous computer science problems. As an NP-hard prob-
lem that traditional iterative algorithms cannot generally solve, programmers
must use genetic algorithms to generate potential solutions. Therefore, we will
study how to apply a genetic algorithm to the TSP.

A discrete genetic algorithm dictates the type of crossover and mutation
operators that you will use. Since a discrete problem is categorical, you will
not be dealing with numbers. Thus, the cities that you might visit are the
categorical information in the TSP. The list of cities, in the order of the visits,
is the genome for each solution. The following shows how you might express
a TSP genome:
[ Los Angles , Chicago , New York ]

Your initial population will be random permutations of these cities. For ex-
ample, an initial random population might look like the following list:
[ Los Angles , Chicago , New York ]
[ Chicago , Los Angles , New York ]
[New York , Los Angles , Chicago ]

You can create a scoring function for the above cities by calculating the miles
traveled over each path. Consider the first population member. Los Angeles
to Chicago is 2,016 miles, according to the driving directions in Google Maps.
Chicago to New York is 790 miles. Therefore, the entire distance that the first
population member covers is 2,806. The distance is the score that we want
to minimize. The above three population members are shown here with their
scores.
[ Los Angles , Chicago , New York ] −> Score : 2 ,016 + 790 = 2 ,806
[ Chicago , Los Angles , New York ] −> Score : 2 ,016 + 2 ,776 = 4 ,792
[New York , Los Angles , Chicago ] −> Score : 2 ,776 + 2 ,016 = 4 ,792

As you can see, the last two paths have the same score. Because the salesman
can start in any city, the last two paths produce the same distance. Some
variants of the traveling salesman problem fix the starting and ending cities.
As the traveling salesman’s home city, the starting and ending points are
identical. Other variants allow the salesman to visit the same city more than
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once. In short, the how you define the rules for the traveling salesman problem
determines how you implement the computer program.

Consider the scenario in which the traveling salesman always starts and
returns to the same city–his home city. In this example, the home city is
St. Louis, MO. Furthermore, the score will be the cheapest airfare. Since
the genome will still consist of permutations of Los Angles, Chicago and New
York, it is not necessary for St. Louis to appear at the beginning and end
of the genome. This prevents the algorithm from changing St. Louis as the
beginning or ending point of the path. In other words, the score function
implicitly recognizes St Louis as the starting point and final destination and
handles it appropriately. Examine the first population member, shown here.

[ Los Angles , Chicago , New York ]

The example includes the following legs of the journey:
St . Louis to Los Angles −> Fare : $393
Los Angles to Chicago −> Fare : $452
Chicago to New York −> Fare : $248
New York to St . Louis −> Fare : $295
Total : $1388

This small change to the problem introduces a number of complexities. Be-
cause St. Louis is in the center of the USA, the salesman can no longer travel
a simple path from east to west or west to east. Additionally, the airfares are
not transposable because the fare from Chicago to St. Louis is not necessarily
the same as the fare from St. Louis to Chicago. The changing price of airfare
for the travel day complicates this problem even more. So, the genome could
include the starting and ending days. In this way, the genetic algorithm could
optimize the travel schedule as well as the order of the cities.
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You can also create the algorithm to allow the salesman to visit the same
city more than once. This requirement, though, adds more complexity to the
scoring function. However, if you relax the requirement so that the salesman
can visit the same city more than once, the best score will likely result from
the following solution:
[ Chicago , Chicago , Chicago ]

The above solution is optimal. The algorithm chose the path from St. Louis
to the cheapest destination–Chicago. The algorithm then chose Chicago again
for the second and third stops. Since the airfare from Chicago to Chicago
is $0, the score for this trip would be excellent. Obviously, in this scenario,
the algorithm did no extra work for the programmer. Therefore, the scoring
function needs to be more complex in order to communicate the parameters
of a truly optimal solution. Perhaps some cities are more valuable and require
visits while others are optional. Designing the scoring function is critical to
genetic algorithm programming.

3.1.3 Application of the TSP to a Genetic Algorithm

Now, we will see an example of a simple genetic algorithm with a good path
through a series of cities. Fifty cities were randomly placed on a 256x256 grid.
The program used a population of 1,000 paths to evolve the best path through
the cities. Because the list of cities is categorical, TSP is a discrete problem.
In this example, the scoring function calculates the total distance covered by
a path of cities, none of which will be visited twice.

These parameters dictate the selection of the most appropriate mutation
and crossover operators. For this example, a shuffle mutation operator is the
best choice. As discussed in Chapter 2, a shuffle mutation operator works well
with fixed-length categorical data. Likewise, we will use a non-repeating splice
crossover operator. Both of operators will allow the population of 1,000 paths
to evolve, and the non-repeating crossover enforces our requirement to visit
the same city only once.

I ran this program through several hundred iterations until 50 iterations
had passed without a single occurrence of improvement to the best path length.
One iteration is the passage of a single generation. The output from the
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program is listed below.
I t e r a t i o n : 1 , Best Path Length = 5308 .0
I t e r a t i o n : 2 , Best Path Length = 5209 .0
I t e r a t i o n : 3 , Best Path Length = 5209 .0
I t e r a t i o n : 4 , Best Path Length = 5209 .0
I t e r a t i o n : 5 , Best Path Length = 5209 .0
I t e r a t i o n : 6 , Best Path Length = 5163 .0
I t e r a t i o n : 7 , Best Path Length = 5163 .0
I t e r a t i o n : 8 , Best Path Length = 5163 .0
I t e r a t i o n : 9 , Best Path Length = 5163 .0
I t e r a t i o n : 10 , Best Path Length = 5163 .0
. . .
I t e r a t i o n : 260 , Best Path Length = 4449 .0
I t e r a t i o n : 261 , Best Path Length = 4449 .0
I t e r a t i o n : 262 , Best Path Length = 4449 .0
I t e r a t i o n : 263 , Best Path Length = 4449 .0
I t e r a t i o n : 264 , Best Path Length = 4449 .0
I t e r a t i o n : 265 , Best Path Length = 4449 .0
Good s o l u t i o n found :
22>1>37>30>11>33>39>24>9>16>40>3>17>49>31>48>46>20>13>47>23>
0>2>29>27>14>34>26>15>7>35>19>21>18>6>28>25>45>8>38>43>32>
41>5>10>4>44>36>12>42

As you can see, 265 iterations occurred before the program settled on a solu-
tion. Because the cities are random, they do not have actual names. Instead,
the cities are labeled as “1”, “2”, “3”, and so on. The best solution, shown
above, started in city 22, continued to city 1 and ultimately stopped in city
42. You can see an online TSP implementation at the following URL:

http://www.heatonresearch.com/fun/tsp/genetic

3.2 Genetic Algorithms for Continuous Prob-
lems

Programmers can also utilize genetic algorithms to evolve continuous, or nu-
meric, data. In the following example, we will predict the type of an iris
species based on four input measurements. So, our genetic algorithm will
train an RBF network model.

http://www.heatonresearch.com/fun/tsp/genetic
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A model is a type of algorithm that makes predictions based on an input
vector. This is called predictive modeling. For the iris data set, we will provide
the RBF network with four measurements that describe an iris flower. The
RBF network will then predict the species of the iris species from these four
measurements. It learns to make predictions by training with the 150 flowers
in the example. Then the model can predict new flowers that were not included
in the training set.

Let’s review how to train a model. Three primary components define how
the genetic algorithms train any model:

• Training settings

• Hyper-parameters

• Parameters

The training settings are unique to the genetic algorithm. Some examples are
the population size, the elitism count, the crossover algorithm, and the muta-
tion algorithm. Later in this book, we will learn particle swarm optimization
(PSO) and ant colony optimization (ACO) as a training algorithm for RBF
network models. ACO and PSO will have unique characteristics for its train-
ing settings. The programmer usually establishes the training parameters. So,
selecting optimal ones might require some trial and error.
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Hyper-parameters define the structure of the model. Consider Figure 3.3
that shows the structure of an RBF network.

Figure 3.3: An RBF Network

In the figure, the second column showing three boxes with bump-shaped
curves are the RBF functions. They enable the RBF network to make pre-
dictions. The number of RBF networks required for this task is a hyper-
parameter. The programmer or the computer can determine the hyper-parameters.
Even though the RBF count does not affect genetic training, you would still
need to set the RBF count if you were training with ACO or PSO. You need to
careful, though. Setting the RBF count too low will create a model that is too
simple to learn the information. Setting the RBF count too high will create
a network that is complex and difficult to train and may lead to overfitting,
an undesirable situation where the model begins to memorize the noise in the
data set rather than learning a more generalized solution. Chapter 10 will
feature overfitting and the ways to avoid it in more detail. In this chapter, we
will set the RBF count to 5, which seems to work well for the iris data set. I
determined this number by experimentation.
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The computer can also determine the hyper-parameters. The trial and
error approach is usually the process to find them. Simply loop between 1 and
10 RBF functions and enable the computer to try each function. Once you
test all 10, the program selects the model with the best score. This number
will tell you the optimal settings for the RBF count hyper-parameter.

The final component is the parameter vector. As the model is trained, it ad-
justs the parameter vector. This aspect differs from the hyper-parameters be-
cause, once the training starts, the model does not adjust the hyper-parameters.
In fact, the hyper-parameters define the model and cannot be changed. Ad-
justing the parameter vector is the means by which a training algorithm, such
as a genetic algorithm, PSO, or ACO, teaches the model the correct response
for a given input. A genetic algorithm utilizes crossover and mutation to adjust
the parameter vectors.

The output listed below shows the progress of training an RBF network
for the iris data set with a genetic algorithm. As you can see, the score does
not improve during the first 10 iterations. Each of these iterations represents
a generation of potential solutions. The score represents the percentage of the
150 iris flowers that were classified incorrectly. We seek to minimize this score.

I t e r a t i o n #1, Score =0.1752302452792032 , Spec i e s Count : 1
I t e r a t i o n #2, Score =0.1752302452792032 , Spec i e s Count : 1
I t e r a t i o n #3, Score =0.1752302452792032 , Spec i e s Count : 1
I t e r a t i o n #4, Score =0.1752302452792032 , Spec i e s Count : 1
I t e r a t i o n #5, Score =0.1752302452792032 , Spec i e s Count : 1
I t e r a t i o n #6, Score =0.1752302452792032 , Spec i e s Count : 1
I t e r a t i o n #7, Score =0.1752302452792032 , Spec i e s Count : 1
I t e r a t i o n #8, Score =0.1752302452792032 , Spec i e s Count : 1
I t e r a t i o n #9, Score =0.1752302452792032 , Spec i e s Count : 1
I t e r a t i o n #10, Score =0.1752302452792032 , Spec i e s Count : 1
. . .
I t e r a t i o n #945, Score =0.05289116605845716 , Spec i e s Count : 1
I t e r a t i o n #946, Score =0.05289116605845716 , Spec i e s Count : 1
I t e r a t i o n #947, Score =0.05289116605845716 , Spec i e s Count : 1
I t e r a t i o n #948, Score =0.051833695704776035 , Spec i e s Count : 1
I t e r a t i o n #949, Score =0.05050776383877834 , Spec i e s Count : 1
I t e r a t i o n #950, Score =0.04932340367757065 , Spec i e s Count : 1
Fina l s c o r e : 0 .04932340367757065
[−0.55 , 0 . 24 , −0.86 , −0.91] −> I r i s −se tosa , I d e a l : I r i s −s e t o s a
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[−0.66 , −0.16 , −0.86 , −0.91] −> I r i s −se tosa , I d e a l : I r i s −s e t o s a
[−0.77 , 0 . 0 , −0.89 , −0.91] −> I r i s −se tosa , I d e a l : I r i s −s e t o s a
. . .
[ 0 . 2 2 , −0.16 , 0 . 42 , 0 . 5 8 ] −> I r i s −v i r g i n i c a , I d e a l : I r i s −v i r g i n i c a
[ 0 . 0 5 , 0 . 16 , 0 . 49 , 0 . 8 3 ] −> I r i s −v i r g i n i c a , I d e a l : I r i s −v i r g i n i c a
[−0.11 , −0.16 , 0 . 38 , 0 . 4 1 ] −> I r i s −v i r g i n i c a , I d e a l : I r i s −

v i r g i n i c a

In the listing, you might have also observed a species count. Since we are not
currently working with species, the type stays at 1. Chapter 5 will introduce
species.

3.3 Other Applications of Genetic Algorithms

The iris data set and traveling salesman problem are common examples in
artificial intelligence literature. Observing how various algorithms solve the
same problem can be beneficial in understanding their differences. However,
it equally valuable to examine the ways in which new problems conform to the
genetic algorithms. This section will show how a variety of problems might be
adapted to a genetic algorithm.

Although the book does not currently implement these applications, I
might include them in the future. The main purpose of the following sec-
tions is to demonstrate the application of genetic algorithms to a variety of
situations.

3.3.1 Tag Clouds

Tag clouds are a convenient tool to visualize word frequency counts in a docu-
ment. In fact, a small tag cloud can represent common words from a very long
document. However, tag cloud algorithms typically remove structural words,
such as the, from the word counts. Figure 3.4 features a tag cloud created
from the text of Artificial Intelligence for Humans, Volume 1: Fundamental
Algorithms.
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Figure 3.4: A Tag Cloud of Volume 1

The above tag cloud shows how often each word occurs. You can easily see
that “algorithm” is the most common word in the book.

To create a tag cloud, you must build a histogram of the word counts. The
histogram for the above tag cloud is shown here.
341 a lgor i thm
239 t r a i n i n g
203 data
201 output
198 random
192 a lgor i thms
169 number
163 input
. . .

The word counts provide the frequency of each word in relation to others. The
words in the tag cloud are also interlocked in order to minimize the amount
of white space between the words. In the example, that smaller words fill in
the spaces under the n and m of algorithm.

To create a tag cloud, the first step is to choose the words and determine
their size. The above histogram illustrates this step. Most likely, you will
include about 100 of the most frequent words from the document in the tag
cloud. The exact number of words in the tag cloud will be adjusted for display
aesthetics. The number of times that the word appears in the text will dictate
the size of the word.
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Eliminating the white space is a great application for a genetic algorithm.
An x and y coordinate, serving as an orientation, represents each word. The
x and y coordinates specify the location of each word on the display. The
orientation specifies whether the word is horizontal or vertical. These three
data items produce a vector equal to three times the number of words in the
tag cloud. If you displayed 100 words, then the vector would be 300 elements
long. The score would penalize the genome for both the white space and the
overlapping text. Tag clouds should never have overlapping text. Therefore,
you need to create a score function similar to the following:
[ white space p i x e l s ] + ( [ over lapp ing p i x e l s ] ∗ 100)

The genetic algorithm should seek to minimize this score function. If the text
overlaps, you need to increase the 100 coefficient.

3.3.2 Mosaic Art

Art generation is another very common example of genetic algorithms. Writing
a scoring function for computer art is very easy. You simply compare the
source image to the one created by the genetic algorithm. You also provide
the genetic algorithm with a set of tools so that it can produce an image and
display its simulated creativity.

A human painter works the same way. Obviously, the easiest way for the
painter to produce an image would be to photograph his subject with a digital
camera. However, he creates art with his set of tools-a brush and paint. For
the genetic algorithm, the tools are the graphical commands of a programming
language. The scoring function simply compares the original image to what
the genetic algorithm produced. For example, you could limit the genetic
algorithm so that it draws circles with only a handful of colors. The genetic
algorithm would evolve to produce the best possible rendition of the original
photograph, using just the elements that it was allowed in the program. In
this way, it displays its simulated creativity.

One example of computer art that you can create with a genetic algorithm
is a mosaic, which is a large image composed of a collection of smaller images.
The master image contains an imaginary grid. Then smaller images are placed
in each grid cell. Figure 3.5 shows a mosaic.
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Figure 3.5: Wynton the Cockatiel as a Mosaic

The above image depicts a cockatiel created from a mosaic of animal pic-
tures. To create this mosaic, the image of a cockatiel was 2,048 by 2,048 pixels.
A grid of smaller animal pictures, each 32x32 pixels, would make up the mo-
saic. If you overlay a grid of these smaller animal images onto the large image,
you would have a 64x64 grid. Choose the set of the smaller animal pictures
to place into the 64x64 grid that would create a grid most like the one of my
pet cockatiel.

Each genome would be a fixed-length array with a length equal to 64 multi-
plied 64, or 4,096 bytes. Each genome would be of length 4,096. Use a scoring
function to compare the difference between the generated mosaic grid image
and the original. Once the scoring is minimized, you would have a mosaic that
closely resembles the cockatiel.



56 Genetic Algorithms

3.4 Chapter Summary

Genetic algorithms utilize populations, scoring, crossover, and mutation to
solve actual programming problems. Genetic algorithms are the concrete im-
plementation of the concepts learned in Chapters 1 and 2. They work with
crossover and mutation to evolve better solutions over subsequent generations.

Genetic algorithms require that solutions be represented as a fixed-length
array. This requirement might seem limiting, but many solutions can be rep-
resented this way. In this chapter, I also demonstrated the traveling salesman
problem and the iris data set. Additionally, I discussed how genetic algorithms
could be applied to tag clouds and image mosaics.

To progress beyond fixed-length arrays, the next chapter will introduce
how to evolve actual programs. In fact, genetic programming can represent a
computer program as a tree structure in order to create better programs for
the next generation.
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Chapter 4

Genetic Programming

• Programs as Trees

• Generating Trees

• Crossover and Mutation for Trees

• Fitting Equations

Chapter 3 presented genetic algorithms that work with a solution array of
a fixed length. However, computer programs are versatile and can represent
solutions in different ways. Of these possibilities, genetic programming allows
you to encode solutions as evolving programs to solve problems.

Unfortunately, the computer cannot simply evolve a Python or C# appli-
cation. Genetic programming requires you to encode your program in a very
specific format. As a result, trees can represent computer programs. Since
this concept is basic computer science, you might already be familiar with this
representation. In any case, we will review tree representation in the next
section.
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4.1 Programs as Trees

Mathematical expressions are a basic component of computer programs. We
will begin by exploring the various ways to represent a mathematical expression
as a tree. You will often see an expression written as Equation 4.1.

√
3
4x

2 − 1 (4.1)

This example is a very common and standardized way of representing an equa-
tion. For instance, given that the value of x is 5, you could provide the answer.
If you are a programmer, you might prefer Equation 4.1 written as program
code.
pr in t ( sq r t (0 . 75∗pow(x , 2 ) )−1 )

The function pow, in case you are not familiar with it, raises the first argument
to the power of the second.

An important point of both of these encodings is precedence. The rules of
precedence tell you that if x is 5, then you raise 5 to the power of 2, yielding
25. You do not multiply 5 by 0.75, yielding 0.375, and then take 0.375 to the
power of 2. Exponent operators have higher precedence than multiplication
operators. The above code clarifies this idea better than Equation 4.1. Looking
at the code, a programmer would easily understand the mathematical order
and evaluate pow(x,2) before the next step because functions always go first.
A function call within another function call always evaluates the inner function
first. Consider the following code:
pr in t ( sq r t (pow(x , 2 ) )

Here, the program must evaluate pow first. That result is subsequently passed
to sqrt.
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In isolation, functions are not ambiguous, and they don’t require any rules
of precedence. However, operators are ambiguous when they lack rules of
precedence. The following formula illustrates this ambiguity:
3+5∗2

What is the value of the above formula? Can you determine the value by
multiplying 5 by 2 and then adding the answer to 3? Or do you obtain the
value by adding 3 to 5 and then multiplying by 2? The two processes give
you different answers. Of course, precedence dictates that multiplication goes
before addition. However, the process loses its ambiguity as soon as you use
functions instead of operators. After all, operators are just shorthand for
functions. There is no difference between 2*3 and mult(2,3).

Consider the above expression written with only functions.
add (3 , mult ( 5 , 2 ) )

If you are dealing with only functions, you do not need to know any rules of
precedence. The grouping parentheses are not required either. Equation 4.1
shows code that contains only functions.
pr in t ( sub ( sq r t ( mult ( 0 . 7 5 , pow(x , 2 ) ) ) , 1 ) )

The above statement requires no knowledge of precedence because the order
is completely unambiguous. The programming language LISP represents ex-
pressions this way using s-expressions. The above code, translated to a LISP
s-expression, appears as follows:
(− ( s q r t (∗ 0 .75 ( expt x 2 ) ) ) 1 )

Notice that LISP calls functions in the following form:
( [ funct ion name ] arg1 arg2 e t c )

In LISP, you write 5+6 as the following:
(+ 5 6)
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4.1.1 Postfix Notation

Postfix notation is another way to represent expressions. It is often referred
to as reverse Polish notation (RPN). Equation 4.1 could be represented as the
following postfix notation expression:
0 .75 x 2 pow ∗ s q r t 1 −

This expression can be treated as a stack. Evaluate its parts from left to right,
pushing each onto a stack. Initially, place the 0.75 on the stack.
0 .75

Next, place the value held by the variable x on the stack.
5
0 .75

Following the postfix expression, place 2 on the stack.
2
5
0 .75

Because we have not yet added a function, we still cannot process anything
on the stack. However, once we place pow, a function that requires two
arguments, on the stack, we can remove two arguments off the stack and
perform pow on them. This process results in taking 5 to the power of 2, which
is the value 25. Thus, we put 25 on the stack to replace the two arguments.
25
0 .75

Next, we place the multiply opcode on the stack. Because multiply is a
function that accepts two arguments, we remove the two arguments from the
stack and perform multiplication. This process results in 0.75 times 25, or
18.75. We now have a single value for the stack.
18 .75
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Next, we place the sqrt function on the stack. The sqrt function accepts a
single argument and returns the square root. The value 18.75 is popped from
the stack, and we use it to calculate the square root to be 4.33.
4 .33

Now we push the value 1 on the stack.
1
4 .33

Lastly, we process the final subtract operator, which subtracts 1 from 4.33,
giving us 3.33.
3 .33

We now have a single value on the stack. Since we are at the end of our prefix
expression, no further values remain to add to the stack. We are done; the
answer is 0.94.

4.1.2 Tree Notation

As you noticed from the previous section, a variety of ways exists to write
the same expression. In this section, I will show you one final way to write
the above expression–tree notation. Consider the postfix notation from the
previous section.
0 .75 x 2 pow ∗ s q r t 1 −
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Figure 4.1 demonstrates the way you write the notation.

Figure 4.1: A Tree Expression

As you can see, subtraction is the root node, which is the top node without
parents. The root node is always the node whose operation is performed
last. All of the other functions must be performed before we can perform the
subtraction. Thus, the root node always appears last in prefix notation.
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4.1.3 Terminal and Non-terminal Nodes

Each of the circles in Figure 4.1 is a node with a certain number of connections.
The type of node dictates the connection count. For example, multiplication
will always have two connections, or arguments. Similarly, square root will
always have a single connection. The variables (e.g., x) and constants never
have connections.

The presence or absence of connections divides the node types into two
very high-level groups. The first classification occurs when a node has no
connections. Its classification is terminal because nothing comes after it. The
other grouping is non-terminal nodes, which can perform operations on the
terminal nodes. For example, the non-terminal node “addition” would perform
the addition operation on two terminal nodes that hold the constants 5 and
10. This process would give the “addition” node the value of 15.

Most genetic programming algorithms are implemented to create a constant
pool (Koza, 1992). A constant pool is simply a fixed list of unique constant
values for the genetic program to use. Most programming languages utilize
constant pools by first scanning the source code for unique constant values
and building them into a list.

The program in Figure 4.1 has three different constants: 0.75, 1 and 2.
When the genetic programming algorithm is first started, it creates a pool
of random constants. The size of the constant pool is a hyper-parameter to
the genetic program. However, the program never adds new constants to this
pool. In other words, the size of the pool has to be sufficient for the existing
constants. Ensuring that the pool has several important numbers, such as 0.5,
1, 2, 10 and 100, is also good practice. If you think your solution might need
certain numeric constants, you may also add those numbers. Through various
combinations of addition, subtraction, multiplication, and division operators,
the pool will allow your program to evolve these extra but required constants.
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4.1.4 Evaluating Trees

Recursion facilitates tree expression evaluation. A simple tree evaluator is
shown in Listing 4.1.

Listing 4.1: Evaluating Trees
sub eva l ( node )
# Fi r s t , handle r e g u l a r opcodes , the se are binary ( two arguments )

i f node . type == ADD:
return eva l ( node . c h i l d [ 0 ] ) + eva l ( node . c h i l d [ 1 ] )

e l i f node . type == SUBTRACT:
return eva l ( node . c h i l d [ 0 ] ) − eva l ( node . c h i l d [ 1 ] )

e l i f node . type == DIVIDE :
return eva l ( node . c h i l d [ 0 ] ) / eva l ( node . c h i l d [ 1 ] )

e l i f node . type == MULTIPLY:
return eva l ( node . c h i l d [ 0 ] ) ∗ eva l ( node . c h i l d [ 1 ] )

# Now, handle unary ( s i n g l e argument )
e l i f node . type == NEGATE:

return −eva l ( node . c h i l d [ 0 ] )
e l i f node . type == SQRT:

return s q r t ( eva l ( node . c h i l d [ 0 ] ) )
else

# Now, handle v a r i a b l e and constant opcodes ,
# these are te rmina l ( no arguments )

index = node . type − VAR CONST
i f index >= len ( c o n s t v a l u e s ) + len ( va r va lu e s ) :

throw e r r o r ( ” I n v a l i d opcode : ” + node . type )
i f index < l en ( va r va lu e s ) :

return va r va lu e s [ index ]
else

return c o n s t v a l u e s [ index − this . varCount ]

The above code shows that the program provides a variable called node to
the function named eval. This function will evaluate all branches below node
and return a floating-point number. If you would like to evaluate the entire
tree, pass the root node to eval. As you can see, eval recursively calls itself.
For example, if you call eval for an ADD node, eval will be called for each
of the two child nodes. The two operands for the addition are the two child
nodes for ADD.
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Each node has an opcode. The opcode tells the node to perform a particular
function. Opcodes represent functions such as addition, subtraction, division,
multiplication, negation, and square root. Opcodes also represent variables
(such as x) and constants (such as 3.5).

The ADD, SUBTRACT, DIVIDE and MULTIPLY opcodes are all
binary because they take two arguments. The NEGATE and SQRT opcodes
are both unary because they take a single argument. The negation is simply
a leading negative sign, such as -x. The single argument for the negation is
the value to flip between negative and positive.

Finally, we evaluate the terminal nodes. Any node that has an opcode
greater than VAR CONST is considered to be a terminal node, which has
no arguments and represents the variables and the constants. You can visualize
all of the opcodes in Figure 4.2.

Figure 4.2: Typical Opcode Layout for Simple Expressions

Opcodes 0 through 5 handle the binary and unary functions. The opcode
VAR CONST defines the storage location of the variables and constants.
Figure 4.2 has two variables (x & y), as well as three constants. By convention,
the variables precede the constants.
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The terms opcode and node can be used interchangeably. The node is
the tree element that contains the opcode and any children. The opcode
is simply an integer that defines the operation that the node will perform.
This operation will be performed in conjunction with the node’s children that
contain the opcode.

4.1.5 Generating Trees

Like other evolutionary algorithms, genetic programming starts with a random
population. This process is simply a matter of generating a number of random
individuals equal to the desired population count. You can use several popular
algorithms to produce a random individual. I will discuss these algorithms in
the next sections.

Additionally, several training settings and hyper-parameters influence the
way the population is created. They are the following:

• Population size is the fixed population size. The initial population will
be this size.

• Constant pool size is the number of constant opcodes that will be
available.

• Low-constant range is the low-end of the range for constant pool mem-
ber generation.

• High-constant range is the high-end of the range for constant pool
member generation.

• Maximum depth is the greatest depth that a random tree can attain.

• Tree Initialization algorithm is the method that generates the initial
population of random trees.

There is also a variable count that is part of the problem definition. For a
simple equation that only uses x, the variable count would be 1. For the iris
data set, the variable count would be 4 in order to match the iris measurements.
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The constant pool size and constant pool range are both considered hyper-
parameters because they define the nature of the model. You cannot change
the constant pool values training since this change would affect the numeric
values that your model needs for calculation.

The maximum depth and tree initialization algorithm are both training
settings. These values affect only the node structure of the initial trees from the
population. In other words, the program does not use them beyond training
and the initial population generation.

Most tree initialization algorithms begin by creating a root node. Then
they add nodes to the root. To accomplish this process, we first need to select
a root node type. We can choose from different sets of opcodes to select a
random node.

• All node types - This set includes all available opcodes, no matter if
they are a function, variable, or constant.

• Function nodes - This set contains all function opcodes. If an opcode
has children, it belongs in this set.

• Terminal nodes - This set has the variable and constant opcodes. If
an opcode does not have children, it belongs in this set.

The different population initialization algorithms will use these three sets.

4.1.6 Full Tree Initialization

One of the earliest initialization algorithms developed for genetic programming
was the full tree initialization algorithm (Koza, 1992). The pseudocode for full
tree initialization is shown in Listing 4.2.

Listing 4.2: Generate a Population with the Full Algorithm
# Recurs ive f u l l f unc t i on . I f we s t i l l have
# remaining depth , then generate a func t i on node
# and continue r e c u r s i v e descent to c h i l d r e n .
sub f u l l n o d e ( remaining depth ) :

# I f the re i s s t i l l depth , c r e a t e a func t i on .
# Functions have c h i l d r e n and w i l l continue .
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i f remaining depth >0:
th i s node = choose func t i on node ( )

else :
# I f no depth remains , then c r e a t e a te rmina l node .
# Terminal nodes have no ch i ld r en , and w i l l stop .

th i s node = choose te rmina l node ( )

# Generate the r equ i r ed number o f c h i l d r e n .
# This i s ze ro for t e rmina l nodes .
for i from 1 to th i s node . needed ch i ld r en

th i s node . add ( f u l l n o d e ( remaining depth −1) )
# Generate a f u l l populat ion .
sub f u l l p o p u l a t i o n ( p o p u l a t i o n s i z e , max depth ) :

populat ion = new Populat ion ( )

for i from 1 to p o p u l a t i o n s i z e :
populat ion . add ( f u l l n o d e ( max depth ) )

return populat ion

As you can see, the above code uses recursion to create a tree. Figure 4.3
shows how a full tree might be generated.

Figure 4.3: Full Tree Initialization

We specify a maximum tree depth of 3. A quick look at the final step
7 shows us that the tree was created with a depth of 2. The tree is depth
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2 because two edges (the lines) between the terminal node and the root are
present.

Step 1 begins by generating the root node. We are not yet at the final
layer, so we choose a random function node for the root. Because we chose
the divide opcode, we now have two child nodes to fill.

Step 2 chooses a random function for the first child of the root. An add
opcode is chosen. Because we are not yet at the maximum depth, we choose
another random function opcode. We now have two more child nodes to fill.

For step 3, we now fill the first child of the add opcode. Since this child is
at the maximum depth, we choose a random terminal opcode, which will stop
the tree from proceeding deeper. Step 4 performs a similar operation for the
second child of the add opcode. The tree is now partially filled to the terminal
nodes. The remaining steps continue in a similar fashion.

4.1.7 Grow Tree Initialization

Another early initialization algorithm developed for genetic programming was
the grow tree initialization algorithm (Koza, 1992). Its pseudocode is shown
in Listing 4.3.

Listing 4.3: Generate a Population with the Grow Algorithm
# Recurs ive grow func t i on . I f we s t i l l have
# remaining depth , then generate a func t i on node
# and continue r e c u r s i v e descent to c h i l d r e n .
sub grow node ( remaining depth ) :

# I f the re i s s t i l l depth , c r e a t e a node .
# Functions have c h i l d r e n and w i l l continue .
i f remaining depth >0:

th i s node = choose node ( )
else :
# I f no depth remains , then c r e a t e a te rmina l node .
# Terminal nodes have no ch i ld r en , and w i l l stop .

th i s node = choose te rmina l node ( )

# Generate the r equ i r ed number o f c h i l d r e n .
# This i s ze ro for t e rmina l nodes .
for i from 1 to th i s node . needed ch i ld r en
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th i s node . add ( f u l l n o d e ( remaining depth −1) )
# Generate a grow populat ion .
sub grow populat ion ( p o p u l a t i o n s i z e , max depth ) :

populat ion = new Populat ion ( )

for i from 1 to p o p u l a t i o n s i z e :
populat ion . add ( grow node ( max depth ) )

return populat ion

As you can see, the above code uses recursion to create a tree. Figure 4.4
shows how a grow tree might be generated.

Figure 4.4: Grow Tree Initialization

The grow algorithm works very similar to the full algorithm. The primary
differences are that the ”Grow” algorithm does not require that nodes be
function opcodes before reaching the final level. Step 1 begins by choosing the
root node, which is determined from the entire set of opcodes. The algorithm
happened to select a divide function opcode. If the algorithm had chosen a
terminal node for the root, then the tree would be finished, and it would have
only one node.

Step 2 begins by filling one of the two child nodes for the divide node. The
program can choose the two child nodes from the entire set of nodes. An add
function is selected for the first child. Steps 3 and 4 show how the rest of the
tree is completed. Step 4 singles out a terminal node (1) as the second child
of the divide opcode. This selection causes the tree to appear off balance.
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4.1.8 Ramped Half-and-Half Initialization

Neither the grow nor the full algorithm provides a wide array of shapes and
depths. As a result, Koza (1992) proposed a combination called the ramped
half-and-half initialization algorithm, which will create half of the initial pop-
ulation using full while half is constructed using grow. Additionally, it uses a
range of maximum depths that provides a greater variation in tree sizes than a
fixed-maximum depth. Listing 4.4 shows the ramped half-and-half algorithm.

Listing 4.4: Generate a Ramped Half-and-Half Population
# Generate a ramped ha l f−and−h a l f populat ion .
sub grow populat ion ( p o p u l a t i o n s i z e , min depth , max depth ) :

populat ion = new Populat ion ( )

for i from 1 to p o p u l a t i o n s i z e :
# Generate a random depth .
depth = random uniform ( min depth , max depth+1)

# Use e i t h e r grow or f u l l with 0 .5 l i k e l i h o o d .
i f random uniform ( ) > 0 . 5 :

populat ion . add ( grow node ( depth ) )
else :

populat ion . add ( f u l l n o d e ( depth ) )
return populat ion

The above code makes use of the grow node and full node methods dis-
cussed previously in this chapter. The ramped algorithm chooses between
grow and full with a 50% probability. Additionally, the algorithm chooses
random tree depths between the min depth and max depth training pa-
rameters.

4.1.9 Reservoir Sampling

Chapter 3 showed the crossover and mutation operators for fixed-length ar-
rays. Before exploring crossover and mutation for trees, we must learn how to
randomly select a node from a tree. Both crossover and mutation for fixed ar-
rays need a method for selecting a random element in the array. The length of
a fixed-length array is known by definition–it is fixed. Simply select a random
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number between zero and one less than the length of the array. For example,
if the array length is 10, then choose a random number between 0 and 9. That
random number specifies the random-array element you just chose, assuming
the array starts at index zero.

Although picking a random-array element from a tree is much more diffi-
cult, you can perform this operation in several ways. An easy but inefficient
method is to calculate the size of the tree, which is the number of nodes present.
However, a computer does not inherently know this number, and the trees are
not guaranteed to have the same sizes. As a result, a common problem arises
in computer science. To determine the size of a tree, the algorithm must visit
each node of the tree and count the number of nodes.

Visiting every node is tree traversal, and several algorithms exist that pro-
vide different orderings of the nodes. Because we are simply counting the
nodes, the ordering is not essential. The algorithm choice does not matter
either. As a result, we will choose a simple but efficient traversal algorithm.
The preorder tree traversal algorithm is a good choice for node counting.

This algorithm is recursive and completes the following steps:

• Visit the root.

• Traverse sub-trees, starting at the left.

• Increase node count by 1.

Listing 4.5 shows a pseudocode implementation.

Listing 4.5: Preorder Tree Traversal
sub count nodes ( node ) :

t o t a l c o u n t = 1

for c h i l d in node . c h i l d r e n :
t o t a l c o u n t = t o t a l c o u n t + count nodes ( c h i l d )

return t o t a l c o u n t

The above code returns the count of child nodes for any node that the function
passes. If you execute this code for the root node, you are given the node count
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for the entire tree. When the algorithm is executed for the root node, you can
see that it calls itself for each of the children of the root. Because of this
recursion, the count nodes function will call itself for each of the children.
This process continues until all the children below the starting point are visited.
Figure 4.5 shows how this traversal occurs.

Figure 4.5: Preorder Tree Traversal

Once the algorithm has the size of the tree, it can choose a random number
between zero and one less than that length to determine the desired tree
nodes. We now traverse the tree a second time and stop once we’ve passed a
quantity of nodes that equal this random number. Although this method of
node selection works, it is inefficient because we must traverse the tree twice.
Nevertheless, the second traversal will probably not be a full traversal.

Reservoir sampling (Vitter, 1985) is an algorithm that allows a random
node to be selected without two traversals. Vitter first introduced this impor-
tant concept for big data as Algorithm R. To understand this concept, consider
how would you choose a random person from the world population. This pro-
cess is complicated because you do not know the total world population when
you first start meeting people. If you did, it would be easy. Just pick a random
number between zero and one less than the exact world population. Now, start
visiting people in any order that guarantees no repeat visits. Once you’ve vis-
ited a number of people equal to the random number, you have your selection.
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However, you do not know the exact world population. You cannot use
an estimate without introducing bias. If your estimate is too low, then your
selection is biased towards people you meet first. If your estimate is too high,
then your selection is biased towards people you meet last. You don’t want to
visit the world population twice. Indeed, you don’t want to do anything twice
with big data!

Reservoir sampling provides a good solution. You begin by visiting each
person, keeping a candidate individual as you visit the population. The first
person you visit becomes the first candidate. When you visit the second per-
son, you generate a random number between 1 and 2. If this number is 1, then
the second person becomes the new candidate. The second person has a 50%
chance of being the candidate. Now you visit the third person and generate a
random number between 1 and 3. If this number is 1, then the third person
is the candidate, with a 33.33% chance to be selected. This process continues
for all people. At the end, whoever is the candidate becomes the selection.
Consequently, your selection stems from just one visit to each candidate.

The name reservoir sampling aptly reflects the selection process involved
in the algorithm. The reservoir is the person you are retaining as the candi-
date. Sampling simply refers to the statistical process of choosing one or more
individuals from the population. You can see the pseudocode for randomly
choosing a tree node in Listing 4.6.

Listing 4.6: Choose a Random Tree Node with Reservoir Sampling
# Traverse the tree , index and r e s e r v o i r are passed by r e f e r e n c e .
sub in t e rna l s amp l e node ( current node , r e f index , r e f r e s e r v o i r ) :

cu r r en t index = index
index = index + 1
# Determine i f we r e p l a c e the r e s e r v o i r .
j = random uniform (0 , cu r r en t index + 1)
i f j == 0 :

r e s e r v o i r = current node
# Traverse on to the c h i l d r e n .
for ch i l d node in current node . c h i l d r e n :

i n t e rna l s amp l e node ( ch i ld node , index , r e s e r v o i r )
# Return a random node from a t r e e us ing r e s e r v o i r sampling .
sub sample node ( root ) :

index = 0
r e s e r v o i r = null
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i n t e rna l s amp l e node ( root , index , r e s e r v o i r )
return r e s e r v o i r

The above code provides a function, which is called sample node, and it
will choose a random node from a tree. The root node must be passed to
sample node. The sample node function is called internal sample node.
The internal function performs a recursive traversal of the tree, using the pre-
order traversal algorithm. The variables reservoir and index keep track of
the current reservoir item and index respectively. Both of these variables are
passed by reference. As a result, changes to them are reflected outside of the
function.

4.2 Mutating Trees

Mutation for genetic programs works in the same principle way as the genetic
algorithms that we saw in Chapter 3. Both mutation algorithms implement
asexual reproduction, creating an offspring that is based on one randomly
altered parent. You can see the pseudocode for a tree mutation in Listing 4.7.

Listing 4.7: Tree Mutate Pseudocode
sub tree mutate ( parent , max mutate depth ) :

# Clone the parent .
c h i l d = parent . c l one ( )
# Choose the po int to mutate .
mutate point = sample node ( c h i l d )
# Replace the mutate po int with a new random t r e e s e c t i o n .
c h i l d . r e p l a c e ( mutate point , grow node ( max mutate depth ) )
return c h i l d

First, a child is created that is an exact clone of the parent. The algorithm then
chooses a random mutation point in the child. This random point is replaced
with a new tree that was created with the grow node function introduced
earlier. We essentially cut off a branch from the child and allow a new branch
to grow in its place. Figure 4.6 shows this process.
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Figure 4.6: Mutation Operator for Trees

As you can see in the above picture, we choose a random point in the
parent. We then generate a random branch. The child is subsequently created
with the random branch grafted into the point selected on the parent. It is
important to note that the parent is not altered during this operation.
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4.3 Tree Crossover

Tree crossover allows two parent trees to reproduce sexually. Crossover works
by copying parent 1, and then it grafts a copied portion of parent 2 into the
copy of parent 1. Neither parent is altered in this process. Listing 4.8 shows
the pseudocode to implement crossover.

Listing 4.8: Tree Crossover Pseudocode
sub t r e e c r o s s o v e r ( parent1 , parent2 ) :

# Find a random point in parent 2 ,
# we w i l l copy this to the new c h i l d .
source = sample node ( parent2 . root )
# Create the c h i l d as a c lone o f parent 1 .
c h i l d = parent1 . c l one ( )
# Find a random point in the c h i l d to g r a f t in parent 2 po int .
t a r g e t = sample node ( c h i l d . root )
# Replace at the c h i l d ’ s random point with a
#c lone o f parent 2 ’ s po int .
c h i l d . r e p l a c e ( target , source . c l one ( ) )
return c h i l d

Two parents, called parent1 and parent2, are passed to the tree crossover
function. The algorithm begins by choosing a random point in parent2, called
source. Next the child is created initially as a clone of parent1. A second
random point, called target, is chosen in this newly created child, and a
random point is chosen in the child called target. Finally, a copy of source
is grafted onto the child tree at point target. Figure 4.7 summarizes this
process.
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Figure 4.7: Crossover Operator for Trees

As you can see in the above figure, the algorithm chooses a target from the
first parent and a source from the second parent. Copying this source to the
target creates the offspring. However, neither parent is changed in the process.
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4.4 Fitting Equations

The last section showed how you could represent equations as evolvable trees,
which allows you to generate an equation that represents a data set. This is
one of the most common uses for genetic programming. For example, consider
the following data set:
x , y
−10 ,342
−9 ,272
−8 ,210
−7 ,156
−6 ,110
−5,72
−4,42
−3,20
−2,6
−1,0
0 ,2
1 ,12
2 ,30
3 ,56
4 ,90
5 ,132
6 ,182
7 ,240
8 ,306
9 ,380
10 ,462

This data set shows the value of y for various x values. This is an example
of regression, rather than classification. Regression problems seek to predict
a numeric outcome for a given input. For the above data set, the input is x
and the outcome is y. We could use an RBF network, as seen in Chapter 3, to
perform this regression. However, one problem with an RBF network is that
it is not explainable.

Explainability can be very important in certain domains of AI. Your RBF
model might tell you that the outcome for an x value of -5 is 72; however, it
won’t tell you the reason for this outcome. In this sense, an RBF network is
a black box. A black box algorithm cannot explain how it comes up with an
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answer. Human intuition works along the same lines. Often a human being
cannot explain a decision; they simply believe it is the right course of action.
Black box models should not be used when the decision should be explainable.
In these cases use genetic programming or one of the linear models from volume
1 of this series.

Formulas are very explainable. If I were to tell you that Equation 4.2
represents the above data set, you now know a considerable amount about the
way that the outcome is determined.

y = 4x2 + 6x+ 2 (4.2)
The above equation exactly defines the relationship between x and y, and it is
not necessary to query a black box model to determine other values. Genetic
programming allows you to produce an equation from a data set.

We will train from the above data to determine whether the equation that
we train will be similar to Equation 4.2. A sample run of this example is shown
here.
I t e r a t i o n : 1 , Current e r r o r = 20710.295679925002 , Best So lu t i on

Length = 20
I t e r a t i o n : 2 , Current e r r o r = 20710.295679925002 , Best So lu t i on

Length = 20
I t e r a t i o n : 3 , Current e r r o r = 20710.295679925002 , Best So lu t i on

Length = 20
I t e r a t i o n : 4 , Current e r r o r = 18435.519210663904 , Best So lu t i on

Length = 16
I t e r a t i o n : 5 , Current e r r o r = 18435.519210663904 , Best So lu t i on

Length = 16
. . .
I t e r a t i o n : 996 , Current e r r o r = 8.510634781265793 , Best So lu t i on

Length = 14
I t e r a t i o n : 997 , Current e r r o r = 8.510634781265793 , Best So lu t i on

Length = 14
I t e r a t i o n : 998 , Current e r r o r = 8.510634781265793 , Best So lu t i on

Length = 14
I t e r a t i o n : 999 , Current e r r o r = 8.510634781265793 , Best So lu t i on

Length = 14
Good s o l u t i o n found :
((−(((−2.36732495)−a )−a ) ) ∗(−((−0.87349794−a )−a ) ) )



4.4 Fitting Equations 83

You can see that the example converged to an error around 8.5. It might take
a few runs of the program to reach a good error. Populations can sometimes
stagnate on a mediocre solution. Chapter 5, “Speciation,” will show one way
to prevent stagnation.

I also limited the maximum length of the tree to 50. Although different
methods of limiting the tree lengths exist, I prefer to build the limitations into
the scoring function. If the length of a genome is over 50, the score function
returns a really bad score.

As you notice in the above output, the algorithm chose the following equa-
tion that best fit the data:
((−(((−2.36732495)−a )−a ) ) ∗(−((−0.87349794−a )−a ) ) )

At first, this equation may not seem like an adequate solution because it is
much more complex than Equation 4.2. However, the genetic algorithm does
not know algebra. If we simplify the above equation, the resulting formula is
Equation 4.3.

4a2 + 6.48165a2 + 2.06785 (4.3)
As you can see, this solution is much closer to the original equation.

You might wonder why the genetic programming algorithm was unable to
figure out a simplified expression. When I first started experimenting with
genetic programming, this issue intrigued me as well. I found that a genetic
program would never converge to a particularly simple form because of the
way that it implements mutation and crossover. Consider how Equation 4.4
could be simplified.

4x+ 2x (4.4)
Figure 4.8 shows Equation 4.4 in tree form as well the simplified equation in
tree form.
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Figure 4.8: Simplify a Tree

Thinking back to tree mutation and crossover, we can see why the above
equation cannot easily evolve into a simplified form. Mutation works by insert-
ing a new branch into part of the parent. No single part of the simplified tree
can be replaced to form the simplified tree. This change would require several
mutations before the simplification occurred. Additionally, each incremental
change would severely worsen the score of the child and decrease the child’s
chances of selection.

Crossover would have a similar issue in creating an offspring that completes
the simplification shown in Figure 4.8. Simply grafting a branch from another
parent will not produce the simplification in one generation.

Because of this issue, most genetic programs use computer algebra systems
(CAS) to perform these simplifications. Once an optimal solution is found, it
is better to perform these simplifications at the end. Premature simplification
causes the genome to have fewer nodes, which means fewer places to mutate the
genome. When you have a fixed number of constant nodes, the program will
create new constants by combining the existing constants through operator
nodes. Although we might not have 0.5, we can represent that value as 1
divided by 2.

4.5 Chapter Summary

The genetic algorithms that we saw in the last chapter required that their
solutions be implemented as fixed-length arrays. In this chapter, we learned
that trees also evolve as they implement the simple programs and mathemat-
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ical expressions discussed in the previous sections. Specifically, tree-centric
crossover and mutation operators evolved these trees.

Computer programs and mathematical expressions can be represented as
trees. Each tree node is a function, and the branches under the tree specify
the arguments to those functions. The recursive nature of these trees allows
complex expressions to be encoded.

Crossover has the greatest chance of producing well-adapted children when
both parents are relatively similar. Of course, nature has many examples of
this idea. Even if the possibility existed that a humming bird and an elephant
could mate and reproduce, their offspring would be ill suited for most every
environment. In nature, offspring between species is very rare. Thus, imposing
these same restrictions on evolutionary algorithms can be useful. Chapter 5,
“Speciation,” shows how to implement this constraint.
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Chapter 5

Speciation

• Threshold Speciation

• Cluster Speciation

• Crossover and Mutation for Trees

• Fitting Equations

Speciation is the evolutionary process by which a new biological species arises.
The biologist Orator F. Cook (1906) seems to have been the first to coin the
term speciation for the splitting of lineages of organisms. Merriam-Webster
(2014) defines a species as a ”group of animals or plants that are similar and
can produce young animals or plants: a group of related animals or plants that
is smaller than a genus.” For the purposes of nature-inspired algorithms, the
key part of this definition is that members of a species can produce offspring.

If an evolutionary algorithm uses speciation, it limits crossover to members
of the same species. Crossover can have a very high failure rate as it takes
traits from two or more individuals and splices them together. This process
works best when the parents are somewhat similar to each other. So far, the
evolutionary algorithms presented in this book have created the possibility for
any fit solutions to become parents together.
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Consider how nature segregates organisms for reproduction. Only members
of the same species produce offspring. Even if it were possible, the offspring
of a humming bird and an elephant would probably not be a successful or-
ganism. Even if we found the best elephant and the best humming bird, their
offspring would surely not be the best at anything. Fundamentally, speciation
is an attempt to improve the probability of success for offspring produced by
crossover.

5.1 Speciation Implementations

Not every nature-inspired algorithm utilizes speciation. However, the algo-
rithms that do use speciation implement it in a similar manner. In every
operation, the first issue to surface is the likeness of the genomes. Do they
share characteristics of the same species? This question implies that a process
exists to compare two genomes. In fact, there are several methods. However,
comparing two fixed-length genomes from a genetic algorithm is quite different
from analyzing two genomes from a tree-based genetic algorithm. Therefore,
we will discuss genome comparison later in the chapter.

No matter how you compare two genomes, the result will be a floating-point
number, which is the distance between the two genomes. A lower number
indicates two genomes that are relatively similar. A higher number indicates
two genomes that are more different.

You will learn two different ways to interpret this similarity measurement
between two genomes. Additionally, you will see a variety of approaches to
calculate it, beginning with threshold speciation.

5.1.1 Threshold Speciation

Threshold speciation is a very simple speciation algorithm that relies solely on
the similarity measurement between two genomes. This speciation algorithm
uses the following two training parameters: species count and the starting
speciation threshold.
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The species count is the desired number of species. A common default
setting for this parameter is 30. This means that the algorithm will try to hold
the species count at 30. However, threshold speciation makes no guarantees
that the species count will be held at this setting. Rather, the species threshold
will be adjusted to move in the direction of this count.

The species threshold value specifies the minimum similarity measurement
that two genomes must have to be the same species. This value is just the
starting point, as the threshold level is adjusted to maintain the desired species
count. Next, the initial generation is divided into species. This division is
called speciation.

An evolutionary algorithm begins by placing the first generated genome
into its own species. The second genome will join the first genome if its simi-
larity measurement is below the speciation similarity threshold. This process
continues for the entire population. Once all population members have been
processed, each genome should belong to a species. This process will repeat
during each generation.

At the end of each generation, the algorithm considers the species count.
If there are too many species, then the speciation threshold will increase. In
other words, the genomes will need to be more similar in order to be grouped
in the same species. This result will decrease the number of species. If there
are not enough species, then the speciation threshold will decrease, which
should increase the number of species. The balancing act continues for each
generation. By adjusting the speciation threshold, the algorithm keeps the
species count close to the level specified by the training parameter.

5.1.2 Clustering Speciation

I have found that threshold speciation increases the effectiveness of crossover
operations in my algorithms. However, threshold speciation is not the only way
to divide a population into species. Clustering is another speciation algorithm.
At the time of this book’s publication, I have not written any clustering specia-
tion examples. I will likely add some examples in the future. In the meantime,
this section will provide an overview of clustering so that you can utilize it in
your own algorithms.
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Clustering speciation uses a clustering algorithm, such as k-means or k-
medoids to provide speciation. The advantage over threshold speciation is that
clustering strictly enforces the desired species count. Typically, a clustering
speciation algorithm will have one species count training parameter, and the
algorithm will exactly divide each generation of the population into that count
of species. Genomes will fall into these species based on their similarity to
each other. It is important to note that the members of a population will
not necessarily split evenly into species. It is quite possible for one species to
contain a handful of individuals and another to contain hundreds.

Clustering algorithms are a form of unsupervised learning. In other words,
there are no right or wrong answers–the computer simply provides insights into
the data. A clustering algorithm takes data and divides them into clusters.
The data in each of these clusters have similar characteristics. Therefore,
clustering algorithms are a natural choice for speciation because they excel at
grouping things.

K-means can be an effective clustering algorithm. In fact, the first volume
of the AI for Humans series features an example on how to implement the
K-means algorithm. This book, though, deals with how to utilize k-means for
speciation. K-means works best for speciating fixed-length arrays because it
cannot operate with only the genome similarity measurement, unlike threshold
speciation. K-means speciation must be able to create a centroid for each
species.

The centroid of a species is the stereotypical representation of its members.
In other words, it is the average species member. However, the centroid does
not actually exist as a genome because it is essentially a concept. For example,
Time (2011) published an article called The World’s Most Typical Person is
a 28-Year-Old Chinese Man that illustrates this idea.

http://newsfeed.time.com/2011/03/04/just-8-999-999-like-him/
In the article, a 28 year-old Chinese man is essentially a centroid for the

entire human race. His face is computer rendered, and he does not exist. He
simply represents the averaging of every existing feature from human genomes.

http://newsfeed.time.com/2011/03/04/just-8-999-999-like-him/
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You can apply this same principle to artificial genomes. For fixed-length
arrays, the centroid is simply the average of each array element across the
genomes in the species. Nevertheless, these centroids are the primary drawback
to k-means speciation, especially compared to threshold speciation.

Reliance on a centroid is a problem because centroids may not always
be available. Even though calculating a centroid for a fixed-length array is
relatively easy, it’s not always possible to calculate for a genome represented
as a tree, as we saw in Chapter 4. As a result, genetic programming cannot
utilize k-means speciation; k-medoids algorithms are preferable for genetic
programming.

The k-medoids algorithm, introduced by Kaufman (1987), works similarly
to the k-means algorithm except that it does not require a centroid. In other
words, that k-medoids can perform speciation on a population using only the
genome similarity measurement discussed earlier in this chapter. It functions
by choosing a genome calculated to be the most representative of the species
to replace the centroid. Therefore, the population is broken into the correct
number of clusters, or species.

5.2 Speciation in Genetic Algorithms

Now, you will learn to calculate the similarity measure for genomes for both
genetic algorithms and genetic programming. In genetic algorithms, you can
apply regular distance calculations to compare the similarity between two
genomes. To perform speciation with a genetic algorithm, Euclidean distance
is a good choice. Simply calculate Euclidean distance as the genome similarity
measurement. Consider the following two genomes expressed as fixed-length
arrays:
Genome 1 : [ 2 . 0 , 3 . 0 , 5 . 0 ]
Genome 2 : [ 1 . 0 , 2 . 0 , 1 . 0 ]

The following equation calculates the Euclidean distance:
√

(2− 1)2 + (3− 2)2 + (5− 1)2 = 4.242641 (5.1)
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The distance shows the similarities between the two genomes. If 4.252641
were below the speciation threshold, these two genomes would be in the same
species.

5.3 Speciation in Genetic Programming

Calculating the similarity measure for trees in genetic programming is only
slightly more complex than genetic algorithms. Because I have not found many
published methods for comparing genetic programming trees, my method is to
traverse the tree and keep a count of the number of nodes that are the same
type. To see this method, consider Figure 5.1.

Figure 5.1: Comparing Trees

Looking at the above trees, you can see that they are somewhat different.
Only three nodes match. Because there are 7 nodes in the entire tree, the
similarity is only 3/7, or 42% the same. The exact calculation is summarized
in Equation 5.1.

∆t1,t2

max(Nt1, Nt2) (5.2)

As you can see from the above equation, we divide the number of changed
nodes between the two trees (t1 & t2 ) and then divide by the total node
count of the largest tree.
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5.4 Using Speciation

The structure of an evolutionary algorithm is changed by the addition of spe-
ciation. To implement speciation, sum the scores of each species to produce
a total population score. Assign each species a percentage of this total score
based on how large that species score is relative to the entire population.
This percentage determines how much of the next generation will come from
offspring of that species.

For example, consider a population of 1,000 genomes and 10 species. Species
#1 has a total score of 1,000, and the total population score is 15,000. Species
#1 has 1,000/15,000 (7%) of the total score. In short, species #1 will pro-
duce 7% of the 1,000 genomes in the next population. To produce these 70
genomes, regular selection is performed inside of the species to determine the
new parents.

Now, you will observe the training for the iris data set using threshold
speciation. This process uses a genetic algorithm to initiate the exact same
training that was performed in Chapter 4. Adding speciation allows the train-
ing to complete in 250 generations. The training progress follows:
I t e r a t i o n #1, Score =0.17495982354737508 , Spec i e s Count : 937
I t e r a t i o n #2, Score =0.1706156692994128 , Spec i e s Count : 829
I t e r a t i o n #3, Score =0.1706156692994128 , Spec i e s Count : 697
I t e r a t i o n #4, Score =0.1706156692994128 , Spec i e s Count : 358
I t e r a t i o n #5, Score =0.16155391035729205 , Spec i e s Count : 159
I t e r a t i o n #6, Score =0.1590871219942837 , Spec i e s Count : 159
I t e r a t i o n #7, Score =0.1590871219942837 , Spec i e s Count : 111
I t e r a t i o n #8, Score =0.1590871219942837 , Spec i e s Count : 98
I t e r a t i o n #9, Score =0.1590871219942837 , Spec i e s Count : 54
I t e r a t i o n #10, Score =0.1590871219942837 , Spec i e s Count : 52
I t e r a t i o n #11, Score =0.15729238266187578 , Spec i e s Count : 24
I t e r a t i o n #12, Score =0.15729238266187578 , Spec i e s Count : 23
. . .
I t e r a t i o n #249, Score =0.052048101781812586 , Spec i e s Count : 600
I t e r a t i o n #250, Score =0.049240602469552884 , Spec i e s Count : 828
Fina l s c o r e : 0 .049240602469552884
. . .

As you can see from the above output, the species count is initially very high
because the randomly generated genomes have little in common with each
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other. After several generations, the genomes become specialized, and the
species count quickly drops. Additionally, the speciation algorithm is lowering
the speciation threshold in an effort to obtain the 30 species count that I
requested for the above run. Near the end of the algorithm’s run, the species
count usually increases greatly as the genomes converge to common solutions.

5.5 Chapter Summary

Speciation is a method for improving the probability that genetic crossover
produces successful offspring. In nature, only organisms of the same species
produce offspring. As in nature, crossover tends to produce better offspring
from similar parent genomes. Evolutionary algorithms can increase the effec-
tiveness of their crossover by employing speciation.

To implement speciation, you must have a way to compare the similarity of
two genomes. Comparison methods will vary according to the different genome
types. For fixed-length genetic algorithm genomes, you can utilize Euclidean
distance. For genetic programming trees, you can use tree comparison.

Chapters 3 and 4 focused primarily on competitive algorithms. The next
two chapters will examine cooperative algorithms. As you will discover, com-
parative and cooperative algorithms have many differences. In Chapter 6, we
will start with particle swarm optimization.
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Chapter 6

Particle Swarm Optimization

• Cooperative Populations

• Flocking, Swarming, and Schooling

• Particle Swarm Optimization

Thus far, implementing competitive populations has been the primary interest
of this book. Now, the focus will shift to cooperative populations in Chapters 6
and 7. Both types of populations will work together to find optimal solutions.

The competitive populations in the previous chapters improved by creating
successively better generations of solutions. Unlike competitive populations,
cooperative populations will not progress through successive generations. A
fixed set of individuals will improve its solutions as the iterations progress. In
other words, rather than adjusting the genetic code, as we did in competitive
algorithms, each of the cooperating individuals adjusts its position.



98 Particle Swarm Optimization

6.1 Flocking

Flocks of birds in the sky illustrate the idea of cooperative behavior. While
flocking may appear as a very complex behavior, many different animals ex-
hibit it. Indeed, expressions like ”flock of birds,” ”swarm of insects,” ”school
of fish,” and ”herd of cows” reveal the identical behavior of grouping through
the various names for it.

Craig Reynolds (1986) first replicated flocking behavior on a computer with
his simulation program, Boids. To all appearances, a flocking algorithm may
seem complex; a programmer would probably create an object to handle all
the individuals in the flock.

Additionally, the programmer would need to develop routines to determine
the direction of the flock. Other decisions for the programmer include whether
a flock should be split into two or more, the criteria that determines the size
of a flock, and the process by which new members are admitted. As a result,
this type of program could become very complex. Figure 6.1 is a flocking
simulation.

Figure 6.1: Flocking Simulation
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Despite these concerns, the programmer still needs to ask the following
question: Is it really necessary for the flocking program to be complex? Na-
ture answers this question with a resounding no. Its apparent complexity
stems from very simple rules. Consequently, nature can inspire us to create
a straightforward process to simulate a flock of birds. The algorithm that
produced Figure 6.1 is actually very simple; it has only three rules.

• Separation - Avoid crowding neighbors (short-range repulsion).

• Alignment - Steer towards average heading of neighbors.

• Cohesion - Steer towards average position of neighbors (long-range at-
traction).

These three rules are the only requirement for flocking. The bird example
demonstrates the utter simplicity in seemingly complex behavior. The parti-
cles, or birds, all move at a constant speed. Each particle also has an angle
that defines its direction. Furthermore, the particles cannot accelerate or slow
down. They can only turn.

Flocking rules also establish an ideal angle for the particle’s direction. In
other words, the rules specify the angle that a particle would like to be heading.
Since a particle cannot immediately jump to the ideal angle, it will begin to
turn in that direction. This behavior is consistent with real life. If a bird is
heading south and wants to change directions to go north, the bird must take
some amount of time to turn to the new heading. A specific percent regulates
the particle’s desire to follow the rules.

You can experiment with these three parameters to see their effect. It’s im-
portant to realize that many combinations will not produce flocking behavior
at all. However, the following default values work well:

• Separation: 0.25

• Alignment: 0.5

• Cohesion: 0.01



100 Particle Swarm Optimization

To observe the effect of one rule in isolation, set that rule to 1.0 and the
others to 0.0. For example, segregating cohesion will cause all of the particles
to converge on a few locations in the universe. No randomness will occur in
this universe at all unless you place the particles in random locations at the
outset. Beyond this placement, the program will no longer generate random
numbers. You can practice with an online example at the following URL:

http://www.heatonresearch.com/fun/flock
Flocking is a fascinating topic because it shows how a universe, such as

the above program, can exhibit seemingly complex behavior. Consider our
universe; it appears very complex. Fields of study such as physics, chemistry,
biology, and others attempt to develop models to explain natural phenomena.
Scientists seek a theory of everything to unify all physical laws into a simple set
of underlying laws (Weinberg, 1993). However, no one has made a unifying
discovery. The best we have now is a theory of almost everything, or the
fundamental forces theory (Oerter, 2006).

The fundamental forces theory categorizes many physical interactions in
terms of four central forces governed by the following universal constants:

• Strong: 1

• Electromagnetic: 1/137

• Weak: 10ˆ-6

• Gravity: 6 * 10ˆ-39

If you would like to read more about the fundamental forces theory, the fol-
lowing URL provides a good overview:

http://hyperphysics.phy-astr.gsu.edu/hbase/forces/funfor.html
The four constants play a role in the real universe that is similar to the

separation, alignment, and cohesion constants in the flocking universe. These
constants define how their respective universes function. Of course, the real
universe is not deterministic, or entirely predictable, as stated in Bell’s the-
orem (1966). On the contrary, the flocking algorithm absolutely defines how
a particle behaves. Actual physical laws give probabilities of how a particle
might behave.

http://www.heatonresearch.com/fun/flock
http://hyperphysics.phy-astr.gsu.edu/hbase/forces/funfor.html
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6.2 Particle Swarm Optimization

Programmers can also utilize flocking as a search algorithm, allowing it to
optimize the parameters of a model. In this way, it can train neural networks,
Bayesian networks, support vector machines, and other machine learning al-
gorithms. This type of algorithm is particle swarm optimization. In 1995,
Kennedy and Eberhart introduced the PSO algorithm. Unlike many learn-
ing algorithms, no math beyond basic arithmetic is required. Thus, PSO is
relatively easy to understand.

First, you must comprehend its mapping strategy to a search space. Con-
sider a lone particle in a one-dimensional search space. This particle can only
move left or right. In a two-dimensional search space, it can move in two
dimensions, like in a checkerboard. A three-dimensional particle can move in
three dimensions. Our world is three-dimensional. Consequently, a bird can
fly up or down, left or right, forwards or backwards.

Unlike in nature, PSO can operate in very high dimension spaces. The
ability to search in higher dimensions is advantageous because most problems
have more than three dimensions. Each parameter in the model is a dimension.
Fundamentally, the parameters of a model reduce to an array of floating-point
vectors.

In a neural network, once you specify the number of neurons and the way
that they fit into layers, the number of weights in this network does not change.
As training progresses, these weights are changed to cause the neural network
to produce the correct output for a given input. These weights become the
dimensions for a PSO search. You can think of the neural network as flying
through these dimensions, looking for an optimal position that is the set of
weights that most closely map the inputs to the desired output.
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6.2.1 Particles

PSO uses a fixed population of particles. Often this number is 30; however,
the algorithm can choose larger or smaller values. Each particle holds several
values. These values are summarized here.

• Current position (or model parameters)

• Best position & score

• Velocity Vector

The current and best positions are vectors of equal length compared to the
model’s parameter-vector length. Additionally, the algorithm keeps a current
score for both the current and best positions. Keeping a particle’s best po-
sition allows the particle to explore space away from its best position. The
ultimate solution provided by the PSO algorithm will be the particle with the
most desirable best score. Depending on the goal of the PSO, whether it is
maximization or minimization, a desirable score might be high or low.

Particles are never at rest; they constantly move. Velocity is speed and
direction. The velocity vector is the same length as the model. One can
express the velocity of a real-world object as the speed at which the object is
moving in each of the three dimensions. Likewise, the particle has a velocity
component for each of the dimensions, which can be negative or positive,
specifying the direction of the particle. Unlike the flocking particles in the last
section, all PSO particles do not move at the same speed. They will accelerate
and decelerate as they move about the search space.

In these movements, the particles will look for the model parameters, or
coordinates, that provide the best score. The velocities furnish the direction
and speed of the particles, which are added to the current coordinate, or
weights. For example, if the third dimension were currently 10, and the velocity
were -0.5, then the third dimension would move to 9.5. As the particles move
around, the best solution for the entire system is the particle with the lowest
best error.
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The velocities are initially set to random values. However, they do not stay
at these random values. The real power of the PSO algorithm is the way that
these velocities are updated. This indicates that learning occurs as the score
increases.

6.2.2 Velocity Calculation

The iteration updates the velocity components, or dimensions, completely in-
dependently of each other. Equation 6.1 shows how this update occurs.
v [ ] = v [ ] + c1 ∗ uniform random ( ) ∗ ( pbest [ ] − param [ ] ) + c2 ∗

uniform random ( ) ∗ ( gbest [ ] − param [ ] )

It happens in such a way that the particle will steer towards the particle’s
best vector (pbest) and the global best vector (gbest). The movement to the
particle’s best is scaled by c1, and the movement towards global best is scaled
by c2, allowing each particle to divide its search between the global (c2) and
local (c1) best.

These values are summarized as follows:

• v[] - The current velocity. Each array position is assigned a new value
in the above equation.

• param[] - The parameters, or coordinates, that corresponds the velocity
of the same array index.

• pbest[] - The best weight array found by this particle.

• gbest[] - The best weight array found by any of the particles.
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• c1 - The learning rate for the particle to converge to its own best. (Typ-
ically set to 2)

• c2 - The learning rate for the particle to converge to the overall best
particle. (Typically set to 2.)

• random uniform() - A random number between 0 and 1.

The only two parameters that must be set are two learning rates, specified by
c1 and c2. These values are typically both set to 2. Setting them to other
values will affect performance of training. Experimentation will determine
whether the setting improves or harms performance.

6.2.3 Implementation

It is not difficult to implement PSO in computer code. Listing 6.1 shows
pseudocode that implements PSO.
for i from 1 to p a r t i c l e c o u n t :

p a r t i c l e = new P a r t i c l e ( )
p a r t i c l e s . add ( p a r t i c l e )

# Randomize p a r t i c l e i n i t i a l s t a t e
for j from 0 to param count−1:

# Set p a r t i c l e v e l o c i t i e s to random
p a r t i c l e . v [ j ] = random uniform (0 , 1 )

# Set p a r t i c l e v e l o c i t i e s to random
p a r t i c l e . param [ j ] = random uniform (0 , 1 )

# Set p a r t i c l e bes t to match the weights
p a r t i c l e . pbest [ j ] = p a r t i c l e . param [ j ]

b e s t s c o r e = min f l o a t
# Main loop
while be s t s c o r e <r e q u i r e d s c o r e :

for each p a r t i c l e in p a r t i c l e s :
s c o r e = s c o r e f u n c t i o n ( p a r t i c l e )
# Update the best p a r t i c l e bes t
i f s c o r e > p a r t i c l e . b e s t s c o r e :

p a r t i c l e . b e s t s c o r e = sco r e
p a r t i c l e . pbest = p a r t i c l e . param . c l one ( )

# Update g l o b a l bes t
i f score >b e s t s c o r e :
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b e s t s c o r e = sco r e
gbest = p a r t i c l e . param . c lone ( )

# Move the p a r t i c l e s
for each p in p a r t i c l e s :

for j from 0 to param count−1:
p . v [ j ] = p . v [ j ] +

c1 ∗ random uniform ( ) ∗ (p . pbest [ j ] − p . param [ j ] )
+ c2 ∗ random uniform ( ) ∗ ( gbest [ j ] − p . parms [ j ] )

p . param [ j ] = p . param [ j ] + p . v [ j ]

The above code begins by creating a number of particles equal to parti-
cle count. These particles are stored in a collection named particles. Each
particle is given a random velocity and parameters (coordinates). Each parti-
cle’s pbest collection is initially set to the same value as that particle’s initial
random position because that is the only location the particle has seen.

Because we seek to maximize the score variable, the best score variable
is initialized to the minimum possible value for a floating-point number. This
terrible score ensures that the main loop will update the best score to the
current score on the main loop’s first pass.

The main loop begins by calculating the current score of a particle. If the
particle has reached a new personal best, then we must update pbest with
this new score. Furthermore, if this score is better than the current global
best score, then we update both the best score variable and gbest vector.
The gbest vector always holds the best parameters encountered so far. The
main loop begins by updating the velocity vector.

PSO optimization can be applied to the RBF neural network model. PSO
trains an RBF neural network by adjusting its model parameters. This method
was used in Chapter 3, “Genetic Algorithms,” for RBF. In that chapter, the
genetic algorithm adjusted the model parameters to achieve a better model
fit. Most training algorithms work this way. The only difference between PSO
and a genetic algorithm is the adjustment of the model parameters. You can
see the results of using PSO to fit an RBF neural network model to the iris
data set in the following example:
I t e r a t i o n #1, Score =0.2608812647245383 ,
I t e r a t i o n #2, Score =0.2608812647245383 ,
I t e r a t i o n #3, Score =0.2608812647245383 ,
I t e r a t i o n #4, Score =0.2608812647245383 ,
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I t e r a t i o n #5, Score =0.20548629451773479 ,
I t e r a t i o n #6, Score =0.20548629451773479 ,
I t e r a t i o n #7, Score =0.1456525667121654 ,
I t e r a t i o n #8, Score =0.1456525667121654 ,
I t e r a t i o n #9, Score =0.1456525667121654 ,
I t e r a t i o n #10, Score =0.1456525667121654 ,
. . .
I t e r a t i o n #56, Score =0.0517051622593003 ,
I t e r a t i o n #57, Score =0.0517051622593003 ,
I t e r a t i o n #58, Score =0.0517051622593003 ,
I t e r a t i o n #59, Score =0.045664739474608994 ,
F ina l s c o r e : 0 .045664739474608994
[−0.55 , 0 . 24 , −0.86 , −0.91] −> I r i s −se tosa , I d e a l : I r i s −s e t o s a
[−0.66 , −0.16 , −0.86 , −0.91] −> I r i s −se tosa , I d e a l : I r i s −s e t o s a
. . .
[ 0 . 2 2 , −0.16 , 0 . 42 , 0 . 5 8 ] −> I r i s −v i r g i n i c a , I d e a l : I r i s −v i r g i n i c a
[ 0 . 0 5 , 0 . 16 , 0 . 49 , 0 . 8 3 ] −> I r i s −v i r g i n i c a , I d e a l : I r i s −v i r g i n i c a
[−0.11 , −0.16 , 0 . 38 , 0 . 4 1 ] −> I r i s −v i r g i n i c a , I d e a l : I r i s −

v i r g i n i c a

PSO is an efficient means of training an RBF neural network. In this case,
only 59 training iterations were required.
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6.3 Chapter Summary

Chapter 6 introduced flocking and particle swarm optimization. Both algo-
rithms use particles. Flocking utilizes individual particles to simulate flocks of
birds. Three simple rules govern the seemingly complex flocking behavior.

Particle swarm optimization (PSO) extends the flocking behavior to be-
come an optimization algorithm. PSO can optimize a vector of parameters to
achieve a desirable score, which allows an optimal RBF neural network model
to fit a data set such as the iris data set. PSO permits the particles to fly
through potentially high-dimensional space looking for optimal solutions.

PSO is not the only cooperative population that I will present. Chapter
7 introduces ant colony optimization (ACO). This nature-inspired algorithm
uses individual ants searching for optimal paths to food, and it is based on the
pheromone trails that ants leave behind to guide others from their colony.
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Chapter 7

Ant Colony Optimization

• Ant Colony Optimization (ACO)

• Discrete ACO

• Continuous ACO

Ant colony optimization (ACO) is another algorithm inspired by nature. Un-
like particle swarm optimization (PSO), ACO is applicable to both continuous
and discrete problems. As a result, ACO is interchangeable with a genetic
algorithm (GA). The continuous and discrete versions of ACO differ consid-
erably, as this chapter will show. Marco Dorigo (1992) introduced discrete
ACO in his PhD thesis. Based on this research, Christian Blum and Krzysztof
Socha (2005) published a continuous version of ACO.

The foraging behavior of ants influences both the discrete and continuous
versions of ACO. In nature, ants initially wander randomly in their search
for food. Upon finding food, the ant returns to the colony while laying down
pheromone trails. The presence of pheromone increases the probability that
an ant will move into that location and continue on that trail. If other ants
discover these paths, a strong probability exists that they will not continue
traveling at random. Instead, they will find the trail, returning and reinforcing
it in their search for food. However, ants will still occasionally travel at random
and possibly find shorter paths.
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Over time, the pheromone trail evaporates, reducing its attractive strength.
Therefore, as an ant spends more time traveling down the path and back again,
there is less time for the pheromones to evaporate. Consequently, ants march
more frequently over a short path, causing the pheromone density to become
higher on shorter paths compared to longer ones. Additionally, pheromone
evaporation encourages exploration beyond the initial paths. Without evapo-
ration, the favorite paths of the first ants tend to be extremely attractive to
later ants (Holldobler, 1990). Figure 7.1 shows ants foraging for food with the
majority of the ants following the established path.

Figure 7.1: Ants Foraging
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Thus, when one ant finds a shorter path from the colony to a food source,
other ants are more likely to follow that path. This positive feedback eventually
leads to most of the ants following a single path. Some ants will still forage
randomly to find shorter paths. The ACO algorithm mimics this behavior with
simulated ants marching around a solution graph that represents the problem
to solve.

7.1 Discrete Ant Colony Optimization

Similar to other algorithms, ACO employs different approaches for continuous
and discrete learning. Continuous learning deals with calculating numeric
values, whereas discrete learning deals with recognizing non-numeric values.
In this section, I will show you the discrete form of the ACO.

The traveling salesman problem (TSP) is a great example of a discrete
problem. Most discrete problems involve finding the optimal arrangement of
a collection of items. Each arrangement must be scored. The ACO can be
designed to either minimize or maximize this score. The typical definition
of the TSP involves the arrangement of cities that provide the shortest path
through the cities without revisiting any city twice.

The following output shows ACO to find a solution to the TSP:
I t e r a t i o n : 1 , Best Path Length = 1696 .0
I t e r a t i o n : 2 , Best Path Length = 1571 .0
I t e r a t i o n : 3 , Best Path Length = 1524 .0
I t e r a t i o n : 4 , Best Path Length = 1454 .0
I t e r a t i o n : 5 , Best Path Length = 1454 .0
I t e r a t i o n : 6 , Best Path Length = 1454 .0
I t e r a t i o n : 7 , Best Path Length = 1454 .0
I t e r a t i o n : 8 , Best Path Length = 1454 .0
I t e r a t i o n : 9 , Best Path Length = 1454 .0
I t e r a t i o n : 10 , Best Path Length = 1454 .0
. . .
I t e r a t i o n : 98 , Best Path Length = 1403 .0
I t e r a t i o n : 99 , Best Path Length = 1403 .0
I t e r a t i o n : 100 , Best Path Length = 1403 .0
I t e r a t i o n : 101 , Best Path Length = 1403 .0
I t e r a t i o n : 102 , Best Path Length = 1403 .0
I t e r a t i o n : 103 , Best Path Length = 1403 .0
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Good s o l u t i o n found :
18>11>24>7>31>32>46>44>8>21>15>36>37>6>2>12>5>43>40>17>23>4>
14>20>0>38>33>10>49>45>29>9>28>48>19>3>34>30>27>1>35>26>25>
22>16>13>47>42>41>39

The above example sought to minimize the path through the cities. At iter-
ation 103, the example had converged on a solution with a length of 1403.

The implementation of discrete ACO defines several constants and starting
values listed here.

• ant count - It’s the number of ants in the algorithm. The default is 30.

• alpha - This constant specifies the attractiveness of the pheromone trail.
The default is 1.

• beta - This constant sets the attractiveness of better state transitions
(from one node to another). The default is 5.

• evaporation - This constant determines how quickly the pheromone
path evaporates. The default is 0.5.

• q - This constant controls the amount of pheromone that the nodes of a
path share for a trip. The default is 500.

• initial pheromone - This term is the initial value of the pheromone
trails. The default is 1.0.

• pr - This constant defines the probability that an ant will simply wonder
to any cell. The default is 0.01.

These training settings control the algorithm. Adjusting them may help the
ACO algorithm to find an acceptable solution faster. However, you need to fol-
low some general guidelines for adjusting the training parameters. Increasing
the evaporation setting will cause the algorithm to try new solutions over
refining the current solution. For larger search areas, increasing the q and
ant count may be necessary. Increasing beta makes the algorithm greedier
and less willing to experiment with path segments containing worse scores. In-
creasing alpha makes the algorithm more inclined to follow established trails
rather than experiment to find new trails.
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7.1.1 ACO Initialization

Discrete ACO typically finds an optimal ordering of items in a list. These items
are usually visualized as a graph and have one continuous line connecting them.
Each item must be visited once, and the same one is never visited twice. In
graph terminology, each item visited is called a node, and the line segments
between nodes is called an edge.

The first step for the ACO algorithm is to initialize the pheromone trails
and ant parameters. A square grid stores the pheromone trails through the
nodes. The square grid’s width is equal to the number of nodes to visit. This
grid represents the pheromone strength between any node and the other nodes.
Since we do not track pheromone strength between a node and itself, we do not
use the diagonal of this grid. We initialize the grid to the initial pheromone
training setting. Figure 7.2 shows an initialized grid for three nodes.

Figure 7.2: Initialized Grid for Three Nodes
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Each ant must also maintain a list of the nodes that it has visited, which
allows the ant to return to the colony after meeting its objective. For a discrete
ACO algorithm, the goal will either be to visit every node or to visit one or
more specific nodes.

The classic traveling salesman problem exemplifies the goal of visiting every
node, as explained in an earlier chapter. Once the ant has visited every node,
it will return and reinforce a pheromone trail, creating a path. You can adapt
this goal to many problems beyond the TSP. Finding the shortest path while
visiting all nodes on a graph is a common computer science problem. Many
brute force and machine learning algorithms are devoted to this problem.

The goal of visiting a specific node is analogous to ants finding a food source
in nature. The goal node is the one that contains a food source for the ants.
However, they do not care about visiting each node. If the goal is to visit a
specific node, the ants concern themselves with the shortest path to that food
source. This algorithm has many real world applications. For example, you
could use an ACO to find the most efficient highway route between St. Louis
and Los Angeles.

7.1.2 Ant Movement

The first step requires the ant to move forward to the next cell. If it is the
first cell that the ant will visit, then a random cell is simply chosen. The ant
can choose any of the nodes as the starting step. Sometimes, the ant will also
visit a random, non-visited square with a probability equal to pr.

If the ant is not taking its first step, and we have not chosen to select a
random move, then we must compute a probability for all non-visited nodes
that the ant selects. Equation 7.1 computes this selection.

pkxy =
(ταxy)(ηβxy)∑

y∈allowedy(ταxy)(η
β
xy)

(7.1)

This equation calculates the probability of moving from node x to node y at
iteration k. Looking at the numerator, we have pheromone deposited between
x and y given by tau. We raise tau to the power of alpha, as the training
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parameter alpha governs the effectiveness of pheromones. In the numerator,
we also have eta, which represents the value of moving from node x to node y.
We raise eta to the power of beta, as the training parameter beta governs the
influence of cost on the ant movement. We divide the product of eta and beta
for the desired x and y by the summation of the tau and eta for all allowed
node transitions.

The summation in the denominator of Equation 7.1 looks at the total value
of the entire unvisited graph from the desirability of score and pheromone. We
subsequently evaluate each potential move as the percentage of that total value
to determine the probability of each potential move being chosen. Based on
these probabilities, a random selection is made to decide the next cell for the
given ant.

The use of Equation 7.1 requires several pages of code. The probability
calculation is shown in Listing 7.1.

Listing 7.1: Ant Movement Probability
# Calcu la te p r o b a b i l i t i e s
de f c a l c u l a t e p r o b a b i l i t y ( index , ant ) :

# We w i l l return an array with the p r o b a b i l i t y o f
# each node .
r e s u l t = new [ l ength ( graph ) ]

# Choose the node that the ant j u s t v i s i t e d .
# This should never be c a l l e d be f o r e the ant v i s i t s
# the f i r s t node .
i = ant . path [ l ength ( path )−1]

# Calcu la te the denominator the path p r o b a b i l i t i e s .
d = 0
for l from 0 to l ength ( graph )−1:

# Do not count v i s i t e d nodes
i f not ant . v i s i t e d ( l ) :

# Sum the pheromone and s co r e va lue s
d = d + ( pheromone [ i ] [ l ] ˆ alpha ) ∗ ( graph . s co r e ( i , l ) ˆ beta )

# Now c a l c u l a t e the i n d i v i d u a l p r o b a b i l i t i e s .
for j from 0 to l ength ( graph )−1:

i f ant . v i s i t e d ( j ) :
# Zero p r o b a b i l i t y i f a l ready v i s i t e d
r e s u l t [ j ] = 0 .0
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else :
# Ca lcu la te p r o b a b i l i t y numerator .
n = ( pheromone [ i ] [ j ] ˆ alpha ) ∗ ( 1 . 0/ graph . s co r e ( i , j ) ˆ alpha )
r e s u l t [ j ] = n/d

# Return the p r o b a b i l i t y vec to r
return r e s u l t

The above function is given the current path index and the ant. This function
will return a vector of probabilities for the ant moving from its current path
index (current position) to any of other nodes. The ant has zero probability of
moving to its own node or a visited node. Equation 7.1 is fully implemented
in Listing 7.1. The external function graph.score is called to determine the
score/cost in moving between two nodes. Because the implementation of pseu-
docode depends on the problem to resolve, I do not provide pseudocode for the
score function. The examples of this book’s code do contain a score function
for the TSP as well as score functions for other examples that might have been
added since publication.

Listing 7.2 performs the selection of the ant’s next step.

Listing 7.2: Choose the Ant’s Next Step
# Choose the next s tep for an ant .
de f choo s e nex t s t ep ( ant ) :

# I f this i s the f i r s t s tep then j u s t choose a
# random ( non−s e l e c t e d ) node .
# Otherwise choose a random ( non−s e l e c t e d ) node with
# pr p r o b a b i l i t y .
i f l ength ( ant . path ) == 0 or uniform random ( )<pr :

index = −1
# Choose a random ( non−v i s i t e d ) node
while index==−1 or not ant . v i s i t e d ( index ) :

index = uniform random (0 , l ength ( graph )−1)
else :

# Obtain an array o f the p r o b a b i l i t i e s o f this ant
# moving to a l l other nodes .
prob = c a l c u l a t e p r o b a b i l i t y ( index , ant )

# Obtain a random number between 0 and 1 that determines
# the chosen node .
r = uniform random ( )
sum = 0
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# We w i l l loop forward adding each p r o b a b i l i t y to sum .
# Once we pass r , we have s e l e c t e d a node , with the
# c o r r e c t p r o b a b i l i t y .
for in from 0 to l ength ( graph )−1:

sum = sum + prob [ i ]
i f sum>r :

return i

# Should not happen , but most programming languages r e q u i r e a
# return value . I f we did get here , then r was as s i gned to
# something beyond 1 . 0 , or the p r o b a b i l i t i e s added to
# more than 1 . 0 .
return −1

The above function calls calculate probability from Listing 7.1 and receives
a list of probabilities for every node that the ant has not yet visited. If the ant
has not yet taken its first step, then we do not calculate probabilities. For the
ant’s first step, we simply choose a random node. To encourage exploration
beyond the pheromone trails, we also pick a random node with pr probability.

The last two listings deal with the preliminaries of probability calculation.
With these preliminaries complete, we can march the ants forward through all
the required steps. Listing 7.3 shows this process.

Listing 7.3: March the Ants
# March a l l ants for one i t e r a t i o n .
de f march ( ) :

# S e l e c t each node , up to the max number o f nodes ( the l ength o f
the graph ) .

# For example , i f the re are 10 c i t i e s in the TSP, loop from 1 to
10 .

for i from 1 to l ength ( graph ) :
# Loop over a l l ants .
for each ant in ants :

# Choose the ant ’ s next s tep
next = choo s e nex t s t ep ( ant )
# Record ant ’ s next s tep
ant . path . add ( next )
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The march function is executed once per iteration. It will cause the ants
to march through all required nodes, which will mean visiting each city for
the TSP. The march function calls the choose next step function and then
records the chosen step.

7.1.3 Pheromone Update

Once the ants have all marched through their complete paths, the pheromone
trails must be updated. This two-part process considers both evaporation and
pheromones deposited by the ants. Equation 7.2 summarizes this update.

τxy = ρτxy +
∑
k

∆τ kxy (7.2)

The variable tau represents the pheromone strength between nodes x and y.
We’re calculating this value. The variable rho specifies the evaporation rate
training argument. Delta tau represents the amount of pheromone left by an
ant between x and y by ant k.

For the TSP, Equation 7.3 typically calculates delta tau. Problems other
than TSP will likely use similar approaches.

∆τ kxy =
Q/Lk if ant k uses path segment xy in its tour

0 otherwise
(7.3)

It is important to note that the exponent k in Equation 7.3 indicates ant k;
it does not signify to raise to the power of k. Next, the algorithm performs
the pheromone update. First, you apply evaporation to all pheromone values.
Listing 7.4 shows the implementation of the evaporation process.



7.1 Discrete Ant Colony Optimization 119

Listing 7.4: Pheromone Evaporation
# Loop over every row .
for row from 0 to l ength ( pheromone )−1:

# Loop over every column .
for c o l from 0 to l ength ( pheromone [ row ] ) −1:

pheromone [ row ] [ c o l ] = pheromone [ row ] [ c o l ] ∗ evaporat ion

The above code loops over every pheromone edge in the graph and multiplies
it by the evaporation ratio. The default evaporation is 0.5, decreasing a
1.0-pheromone level to 0.5 on the first iteration. The second iteration would
also reduce by half the pheromone level to 0.25. Once a location’s pheromone
level is reasonably close to zero, that location can be set to zero.

Next, we must update the pheromone trails that the ants created. This
update is demonstrated in Listing 7.5.

Listing 7.5: Pheromone Update
# Loop over each ant
for each ant in ants :

# Ca lcu la te the de l t a as the t o t a l pheromones ( q ) d iv ided by
# the s co r e that the ant achieved .
d = q / graph . s co r e ( ant )
# Update the pheromones between a l l s t ep s . Subtract 2 to
# c a l c u l a t e up to the 2nd to the l a s t node ( the l a s t node
# has no edge to any f u r t h e r nodes )
for i from 0 to l ength ( graph )−2:

pheromone [ ant . path [ i ] ] [ i +1] = pheromone [ ant . path [ i ] ] [ i +1] + d
# Update the f ina l node ’ s pheromone .
pheromone [ ant . path [ l en ( ant . path ) −1 ] ] [ ant . path [ 0 ] ] =

pheromone [ ant . path [ l en ( ant . path ) −1 ] ] [ ant . path [ 0 ] ] + d

The above code loops over every ant and applies Equation 7.3.
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7.2 Continuous Ant Colony Optimization

The continuous version of ACO is based much more loosely on the pheromone
trail paradigm of ants in nature. The continuous form of ACO is the most
efficient algorithm for model fitting for the data sets presented in this book.
ACO will typically adjust the RBF model’s parameters to minimize a data
set’s error with less iteration than particle swarm optimization (PSO) and
genetic algorithms (GA).

Like discrete ACO, the ants in a continuous ACO algorithm are candidate
solutions. Each ant is a vector of floating-point parameters. If you are using
the continuous ACO to fit a model, such as the RBF neural network, this
vector specifies the weights and RBF parameters of the model. This vector of
parameters is analogous to the position of the ant.

Unlike the discrete version of ACO, we do not view each element of the
vector as a step in the path of the ant. With continuous ACO, each element is
part of a high-dimensional position of the ant. The iteration moves each ant
to a random position generated by a probability density function (PDF). This
process is called sampling.

Random numbers sampled from a PDF are biased. The Gaussian, or nor-
mal distribution, is the PDF most commonly used for continuous ACO. The
equation for a Gaussian PDF is shown in Equation 7.4.

g(x, µ, σ) = 1
σ
√

2π
e−

(x−µ)2

2σ2 (7.4)

The above equation allows you to define the center and width of a PDF.
The constant mu defines the center, or mean. The constant sigma defines the
width, or standard deviation. Figure 7.3 shows the Gaussian PDF with several
different mu and sigma values.
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Figure 7.3: Gaussian PDF’s

In the graph, the x-axis shows the value, and the y-axis shows the proba-
bility of selection. The random numbers sampled from each of the Gaussian
have the greatest likelihood of being near the mean (or mu). The smaller
the standard deviation (or sigma), the greater the likelihood that the random
sample will fall very close to the mean.

The Gaussian PDF has a disadvantage because the variation in the shape of
the Gaussian function is limited. A programmer cannot use a single Gaussian
function to define a situation where there are two disjoint peaks, which are
promising (Socha, 2007). A standard Gaussian function has only a single peak.
To overcome this disadvantage, we will utilize a Gaussian kernel composed of
several Gaussian functions. These kernels combine several Gaussian functions
to express patterns more complex than the single-peaked shape of a Gaussian
function. Equation 7.5 shows a Gaussian kernel.

G(x) =
k∑
l=1

ωlg(x, µl, σl) (7.5)

As you can see, Equation 7.5 builds upon Equation 7.4 because we are now
summing k Gaussian functions together. Each of these Gaussian functions
has their own mu and sigma values. More importantly, a separate omega
value weights each component Gaussian function. Based on its fitness, you
will adjust the omega value for each Gaussian function. Figure 7.4 shows how
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several Gaussian functions can be summed to produce a Gaussian kernel with
a complex multi-peaked pattern.

Figure 7.4: Gaussian Kernel

As you can see from the above graph, summing the individual Gaussian
functions produces a Kernel that incorporates each of their peak values. The
dotted line shows this kernel value.

7.2.1 Initial Candidate Solutions

The ACO initially places the ants at random locations. Each element of an
ant’s position (solution) vector is set to a random number between -1 and 1.
The Gaussian kernels are not used to generate these random values, as the
Gaussian kernels have not yet been established. The Gaussian kernels will be
created based on the scores of this initial random population of ants.

The continuous ACO algorithm will employ a number of Gaussian kernels
equal to the number of parameters that you are trying to optimize. If your
RBF neural network had a parameter vector of length 10, you would use a
separate Gaussian kernel to sample each element of the parameter vector. For
each iteration, an ant moves to a new location based on the random numbers
sampled from the Gaussian kernels. We must always store the position vector
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with the highest score. This highest scoring vector will become the ultimate
solution of the continuous ACO.

7.2.2 Ant Movement

A typical Gaussian kernel will perform the summation of every component,
as shown in Equation 7.5. A continuous ACO will only select one component
Gaussian function at a time to calculate the elements of an ant’s parameter
vector. The continuous ACO chooses a mean and standard deviation for the
elements of the solution vector. Using this mean and standard deviation, a
new position is chosen for the elements of that ant’s solution vector.

We will loop over every ant in the population and assign that ant a new
location. Additionally, every ant in the population will have its own potentially
unique model ant to help with the calculation. A roulette wheel selects the
model ants based on desirability of that ant’s score. Each ant will move towards
its model ant’s parameters.

We will use each of the model ant’s solution vector elements as the mean
values for the random Gaussian sample. We also need a standard deviation
to generate a Gaussian random sample. Equation 7.6 calculates the standard
deviation.

σl = ξ
N∑
i=1

xi − xl
N − 1 (7.6)

This equation bears some resemblance to the actual formula to calculate a
sample’s standard deviation; however, it was somewhat altered for the con-
tinuous ACO. Keep in mind that we are not calculating a standard deviation
in the purest definition from statistics. We are calculating the value to use
as the standard deviation parameter for random sampling from the Gaussian
function.

Essentially, this equation calculates the mean difference between the model
ant’s parameter element (x sub l) and all of the other ants’ parameter values
(x sub i). We divide by N-1 because we do not want to include the model
ant. The model ant’s difference with itself is zero; so subtracting 1 from N
effectively cancels it in both the numerator and denominator. You will also
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notice that Equation 7.6 includes the coefficient xi, which is analogous to the
pheromone evaporation rate. This number should be between 0 and 1. The
xi training parameter corresponds to the learning rate in many other training
algorithms. High value for xi results in low convergence speed (Socha, 2007).

We will now examine the pseudocode necessary to implement ACO. Listing
7.6 shows the pseudocode for selecting a model ant.

Listing 7.6: Selecting a Model Ant
de f s e l e c t m o d e l a n t ( ) :

l = 0

# Calcu la te the t o t a l we ight ing ( s co r e ) over a l l ants .
sum weighting = 0
for each ant in ants :

sum weighting = sum weighting + ant . we ight ing
# Choose a random ant , with b ia s to b e t t e r s c o r i n g ants .
r = random uniform ( )
temp = 0
# Loop over a l l ants us ing a r o u l e t t e wheel s e l e c t i o n .
for each ant in ants :

temp = temp + weight ing [ i ] / sum weighting
i f r < temp :

return r
# We should never reach this po int .
return −1

We will select a model ant for each of the ants that we must move. In addition
to a model ant, we must also calculate the standard deviation in order to
sample from the normal distribution. Listing 7.7 shows how to calculate the
standard deviation.

Listing 7.7: Determine Standard Deviation
# Compute the standard dev i a t i on to use for random sampling .
de f compute sd ( ants , model ant , x ) :

# Sum the d i f f e r e n c e s between the model ant and other ants .
sum = 0.0
for each ant in ants :

sum = sum + abs ( ant . params [ x ] − model ant [ x ] )
/ ( l ength ( ants )−1)
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# Force a minimum thre sho ld .
i f sum == 0 :

sum = MIN SIGMA

# Apply evaporat ion ra t e and return .
return x i ∗ sum

Apply the functions provided in Listings 7.6 and 7.7 to move all the ants.
Listing 7.8 shows how the continuous ACO completes this process.

Listing 7.8: Continuous ACO Movement
de f move ants ( ) :

# Loop over each ant in the populat ion .
for each ant in ants :

# Choose the model ant .
model ant = s e l e c t m o d e l a n t ( )
# Move the ant .
for j from 0 to l ength ( ant . params ) :

# Determine the sigma and mu to sample a
# random number from .
sigma = compute sd ( ants , ants [ model ant ] , ants [ j ] )
mu = ant [ pdf ] . params [ j ]
# Sample the random number to become the ant ’ s
# new p o s i t i o n .
d = random normal (mu, sigma )
# Move t h i s element o f the ant ’ s p o s i t i o n .
ants . params [ j ] = d

Continuous ACO can be applied to the RBF neural network iris model fitting
process that we have seen with both particle swarm optimization (PSO) and
genetic algorithms (GA). For fitting the iris data set, ACO tends to be the most
efficient, followed by PSO and then GA. No general assumptions can be made
across all data sets on algorithm efficiency. The fact that ACO performed best
for the iris data set does not mean that ACO will perform the best for all data
sets. The output from the ACO iris example is listed below.
I t e r a t i o n #1, Score =0.20576496592647195 ,
I t e r a t i o n #2, Score =0.20576496592647195 ,
I t e r a t i o n #3, Score =0.20576496592647195 ,
. . .
I t e r a t i o n #61, Score =0.05167890084491037 ,
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I t e r a t i o n #62, Score =0.05148646349444265 ,
I t e r a t i o n #63, Score =0.047341109226974765 ,
F ina l s c o r e : 0 .047341109226974765
[−0.55 , 0 . 24 , −0.86 , −0.91] −> I r i s −se tosa , I d e a l : I r i s −s e t o s a
[−0.66 , −0.16 , −0.86 , −0.91] −> I r i s −se tosa , I d e a l : I r i s −s e t o s a
. . .
[ 0 . 2 2 , −0.16 , 0 . 42 , 0 . 5 8 ] −> I r i s −v i r g i n i c a , I d e a l : I r i s −v i r g i n i c a
[ 0 . 0 5 , 0 . 16 , 0 . 49 , 0 . 8 3 ] −> I r i s −v i r g i n i c a , I d e a l : I r i s −v i r g i n i c a
[−0.11 , −0.16 , 0 . 38 , 0 . 4 1 ] −> I r i s −v i r g i n i c a , I d e a l : I r i s −

v i r g i n i c a

As you can see, the ACO algorithm was able to fit the model in 63 iterations.

7.3 Chapter Summary

Ant colony optimization (ACO) is a cooperative population optimization al-
gorithm. ACO works very similarly to a genetic algorithm because you can
apply it to both discrete and continuous problems. ACO, particle swarm opti-
mization (PSO), and genetic algorithms (GA) can be used interchangeably for
continuous problems. However, PSO is not compatible with discrete problems,
so only ACO and GA can be interchanged. Ultimately, selecting an algorithm
is a programmer decision because no concrete rules exist for choosing one
algorithm over another for a particular problem.

Discrete ACO was the first development of this algorithm. Determining
optimal paths and orderings is the primary purpose of discrete ACO. The
traveling salesman problem (TSP) and related path problems are a common
use for discrete ACO, which works through simulated ants leaving pheromone
trails. Successful ants reinforce good paths. Evaporation decreases pheromone
strength and encourages ant exploration.

Continuous ACO allows the algorithm to optimize a vector of floating-point
numbers by using a population of evolving probability distribution functions
(PDF) that determine the next position for each ant. Calculating mean and
standard deviation values from the population of ants shapes these PDFs.

Thus far, the focus of this book has been on cooperative and competi-
tive populations that provide solutions to discrete and continuous problems.
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Chapters 8 and 9 will focus on cellular automata and artificial life. Cellu-
lar automata apply simple rules to a grid of cells. Artificial life attempts to
simulate simplified life forms.
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Chapter 8

Cellular Automata

• Elementary Cellular Automation

• Conway’s Game of Life

• Evolving physics

Cellular automata (CA) are algorithms that manipulate values stored in grids
or higher dimensional spaces. This chapter will focus on CAs in 2D spaces
expressed as grids. As the cellular automation runs, it often produces complex
animated patterns. However, the rules that govern the grid manipulations are
usually very simple. Creating beautifully complex patterns with basic rules is
the primary purpose of cellular automata.

Artificial life is a common application for cellular automata because in-
dividual grid cells can approximate actual cells. Consequently, video games
frequently utilize them to enhance the experience. For example, cellular au-
tomata control water and lava flow in Minecraft (2009).

From a strictly business-oriented stand point, Chapters 8 and 9 are the least
practical chapters in the book. Most of the algorithms presented in this chapter
are for entertainment or artistic purposes. Nevertheless, cellular automata and
artificial life are both very active areas of research. They were also very popular
with the backers of this book’s Kickstarter project. Chapters 8 and 9 do not
contain any prerequisite knowledge for Chapter 10 or the remainder of this
book series. If you are not interested in cellular automata or artificial life, you
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can skip to Chapter 10 without missing any prerequisite knowledge. Chapter
10 deals with data science, which is one of the most practical and popular
applications of AI to business.

Although business applications rarely exploit cellular automata, other in-
dustries take advantage of this technology. Cryptography, simulation, random
number generation, and music composition represent some of the applications
for CA. To build your understanding of common cellular automata, this chap-
ter will introduce elementary cellular automation and Conway’s Game of Life.
Finally, an example showing how to evolve your own cellular automata will
conclude this chapter.

8.1 Elementary Cellular Automation

An elementary cellular automaton (ECA) is one-dimensional with two possible
states (labeled 0 and 1). Often these states are shown graphically, with 0 as
white and 1 as black. The rule to determine the state of a cell in the next
generation depends only on the current state of the cell and its two immediate
neighbors. As a result, ECA is one of the simplest possible cellular automata.

To create an ECA, start with a grid. The first row of the grid, called row 0,
should be initialized either by all zeros, random values of 0 and 1, or a single
1 value in the center column. Row 1 will be initialized based on the values in
row 0. Similarly, row 2 will be based on row 1. This process continues for as
many rows as are present in the grid. To begin calculating row 1, we determine
each pixel’s value by looking at the three pixels immediately above the pixel
we are considering. Figure 8.1 shows the three pixels that we consider from
the previous row.
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Figure 8.1: ECA Pixel Influencers

As you can see from the above figure, the pixel in row 1 (second row of
the diagram) is influenced by the three shaded pixels above it in row 0 (first
row of the diagram). A simple table defines how the previous three pixels
influence the current pixel. If we have three bits, then we have eight possible
combinations of values that we use to express the rules for the ECA. This
process allows us to specify what the current pixel should be.
I f p rev ious row = 111 then cur rent p i x e l = 0
I f prev ious row = 110 then cur rent p i x e l = 0
I f prev ious row = 101 then cur rent p i x e l = 0
I f prev ious row = 100 then cur rent p i x e l = 1
I f prev ious row = 011 then cur rent p i x e l = 1
I f prev ious row = 010 then cur rent p i x e l = 1
I f prev ious row = 001 then cur rent p i x e l = 1
I f prev ious row = 000 then cur rent p i x e l = 0
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If we keep the order of the above if-statements constant, we can specify the
behavior of an ECA with only the output bits. In this case, the above rules
would simply be 00011110. Because eight values exist, there are two to the
power of eight, or 256 combinations. In other words, we can specify a maximum
of 256 different ECAs.

Steven Wolfram (2002) provided a standardized way of representing the
rules of the ECA. The if-statements previously mentioned match the order of
the if-statements that Wolfram established. Because of his view that binary
numbers, such as 00011110, were too cumbersome to write, Wolfram opted for
regular decimal numbers. The rules for the binary number 00011110 are called
Rule 30 in Wolfram ECA notation. Rule 30 is shown graphically in Figure 8.2.

Figure 8.2: Wolfram’s ECA Classification for Rule 30

To run Rule 30, simply initialize the first row to a single 1 value in the
middle column. Then, loop over the next row and set each pixel to the re-
quirements of Rule 30. When you calculate the first and last pixel of a row,
you will be missing a left and right pixel from the previous row, respectively.
Always assume missing pixels are zero. Figure 8.3 shows missing pixels at the
edge of the grid.
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Figure 8.3: Missing Pixels in a CA

The above diagram shows the calculation of the first pixel of the second
row. We have access to the pixel immediately north and northeast. However,
the northwest pixel is missing and is treated as 0. Together with the north
and northeast pixels, we have 010. According to Rule 30, this situation results
in a value of 1. As expected, these rigid rules can produce highly repetitive
patterns. The output from Rule 30 is shown in Figure 8.4.
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Figure 8.4: Rule 30 ECA

Because Rule 30 is a particularly interesting ECA, researchers have studied
it extensively. It also occurs in nature. The triangles and line patterns that
you see in Figure 8.4 appear on the shell, as seen in Figure 8.5.

Figure 8.5: Rule 30 in Nature

Not all ECA rules are as interesting as Rule 30. Figure 8.6 shows Rule 94,
a highly repetitive ECA.
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Figure 8.6: Rule 94 ECA

If you would like to see examples of other ECA rules, Steven Wolfram’s
website has images for all 256 rules.

http://mathworld.wolfram.com/ElementaryCellularAutomaton.html

8.2 Conway’s Game of Life

Conway’s Game of Life (1970) is one of the most well-known cellular automa-
tion programs. Unlike ECA, the Game of Life is a continuously running ani-
mation. The grid is updated each iteration, and these iterations make the cells
appear animated to the user. Figure 8.7 shows a single iteration of the Game
of Life, using this book’s JavaScript example.

http://mathworld.wolfram.com/ElementaryCellularAutomaton.html
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Figure 8.7: Conway’s Game of Life

The above image really does not do justice to the Game of Life because it
is not animated. You can see an animated version of the Game of Life at the
following URL:

http://www.heatonresearch.com/fun/conway
The book’s examples also contain animated versions of the Game of Life.

http://www.heatonresearch.com/fun/conway 
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8.2.1 Rules of the Game of Life

Like most CAs, Conway’s Game of Life follows a set of very simple, completely
deterministic rules that lack randomness.

Listing 8.1: Rules of Conway’s Game of Life
1 . Any l i v e c e l l with fewer than two l i v e ne ighbors d ie s , as i f

caused by under−populat ion .
2 . Any l i v e c e l l with two or three l i v e ne ighbors l i v e s on to the

next gene ra t i on . (The r u l e i s not t y p i c a l l y needed )
3 . Any l i v e c e l l with more than three l i v e ne ighbors d ie s , as i f

by overcrowding .
4 . Any dead c e l l with exac t l y three l i v e ne ighbors becomes a l i v e

c e l l , as i f by reproduct ion .

The above rules define a cell as a grid element containing the value 1. Rules 1
and 3 specify when a cell dies. Rule 2 regulates when a cell continues to live.
Rule 4 determines when a new living cell is created. Setting the grid element
to 1 creates a cell. Adjusting the grid element to 0 kills a cell.

Listing 8.1 displays the rules in the way that Conway originally stated.
From a technical standpoint, rule 2 is not needed if you ignore the living cells
that rules 1 and 3 do not cover. The examples provided for this book do
not directly implement rule 3; living cells are left alive until another rule kills
them.

Adherence to these rules will produce very complex animated patterns.
Grids are usually initialized to random patterns. Running grids will often
converge to a stable pattern. However, some grids can run for a very long
time.
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8.2.2 Interesting Life Patterns

Conway’s Game of Life features many interesting patterns that researchers
have already explored. You can study them and create worlds of your own
through the free application Golly. Additionally, many published papers about
the game’s patterns cite Golly as a research tool. For this book, I captured
Game of Life patterns with Golly. You can download the application from the
following URL:

http://golly.sourceforge.net/
Some seemingly simple patterns can take a very long time to converge.

Convergence refers to a grid that has reached a repeating state. The grid may
still have movement, but it will cycle back to exactly the same state every 4
to 10 iterations. A pattern that takes a large number of iterations to converge
is called a Methuselah. This name originates from a biblical character that
reached the age of 969 years (Genesis 5:21-27). Figure 8.8 shows a relatively
simple Methuselah.

Figure 8.8: The Blom Methuselah

The above figure shows the Blom Methuselah that has a lifespan of 23,314
iterations before convergence (Hickerson, 2002). Once the cells reach this
state, there are an average of 2,740 live cells. Most Methuselahs will shoot off
spaceship type particles as they age. These spaceships will travel indefinitely,
and you should not count them as part of the convergence of the cellular
automation.

http://golly.sourceforge.net/
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A spaceship is a particle that retains its basic shape and moves in a fixed
direction. Spaceships are a very interesting aspect of Game of Life research.
One of the simplest spaceships is the glider in Figure 8.9.

Figure 8.9: Four Gliders

There are four gliders in the above figure. The top-left glider is moving
northwest, the top-right glider is moving northeast, and the bottom two gliders
are moving southwest and southeast, respectively. Gliders always fly diago-
nally, and the classic glider has only four different directions. All Game of Life
spaceships travel by cycling through a series of phases. Figure 8.10 shows the
four phases in a glider cycle.

Figure 8.10: The Four Glider Cycle Phases
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The glider flips through these four images much like the process of flipping
pages to produce a cartoon. Additionally, spaceships can fly the four cardinal
directions of north, south, east, and west. Another common pattern is the
glider gun that can produce a stream of gliders in whatever direction the gun
is pointed.

If you plot your Game of Life with Golly, a nearly infinite grid is put in
effect. Because Golly stores the grid as a sparse 2D array, the memory only
holds living cells. Figure 8.11 shows a Blom Methuselah after it has converged.

Figure 8.11: The Blom Methuselah from Afar

The above image displays a more distant view of the Methuselah. You
should be able to see the converged Methuselah near the center of the image.
Furthermore, dots radiate out to the northwest, northeast, southwest, and
southeast. (The dots might be hard to see in some e-book forms of this book.)
These dots are spaceships that were emitted while the Methuselah converged.
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Scarcely any dots are in the northeast diagonal or near the core of Methuse-
lah. One reason for this sparseness is the core becomes much less active as it
ages. Only a few iterations had occurred after convergence when I took the
screenshot. Eventually, the core would not have any nearby spaceships; they
would all travel to deep space.

8.3 Evolve your Own Cellular Automata

Cellular automata like Conway’s Game of Life are intriguing, and computer
programmers have been experimenting with them since they were first intro-
duced decades ago. I first saw Conway’s Game of Life from the Loadstar
monthly disc subscription for Commodore 64. Although the program was
painfully slow and could support only a grid the size of the C64’s 40x25 screen,
it fascinated me. I translated the slow BASIC code to much faster 6510 as-
sembly language.

Conway’s four simple rules inspired me, and I wanted to create my own
cellular automation. We’ve already seen that we can evolve programs using
evolutionary algorithms. I will now show you how to evolve your own unique
cellular automata.

In this section, I will introduce you to a cellular automation that I created
called merge physics. This original research cellular automation is published
to Code Project (http://www.codeproject.com). Merge physics, my highest-
rated Code Project article, can be found at the following URL:

http://goo.gl/RwNKqw
The goal of merge physics is to produce new and interesting cellular au-

tomata using a very simple cellular automation. Therefore, I define a cellular
automation similar to ECA. Instead of a single 8-bit number to tweak, I utilize
a vector of 16 floating-point numbers. Different combinations of these numeric
constants can produce some very impressive patterns.

Obviously, optimizing floating-point vectors is a primary focus of this book.
However, the scoring function is not so simple. To evolve these CAs, human-
based genetic algorithms (HBGA) are necessary. As the name implies, an
HBGA requires a human to fulfill parts of the genetic algorithm (GA). The
user’s job is to determine which cellular automata look interesting. The user

http://goo.gl/RwNKqw
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ultimately fulfills the role of the score function.
Here is a very simple pattern vector that produces slowly growing purple

blobs that are enclosed by a membrane and lack an internal structure. This
universe ultimately converges to a stable pattern. Figure 8.12 shows this
pattern.

Figure 8.12: Simple Stable Merge Physics Universe

The vector that produces this purple blob universe is shown here. (Note:
if you save this vector to a file to open in the multiverse viewer, make sure
there are no line breaks.)
[ 0 .8500022604957287 , −0.018862014555296902 ,
−0.5920368462156294 , 0 .6025118473507605 ,
−0.25332713280631114 , −0.9442865152657809 ,
0 .8385370421691785 , 0 .11515083295327955 ,
0 .07865610718434457 , −0.4461260674309575 ,
0 .6233523022386354 , −0.10991833670148407 ,
0 .9372981778896297 , 0 .7423301656036665 ,
0 .1214234643293226 , 0 .02417402657410897]

The red universe that follows is one of my favorites so far. A lot of activity
takes place in this universe that resembles a colorful version of Conway’s Game
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of Life. Spaceships, guns and rakes abound! A rake is a type of spaceship
that leaves behind a trail of debris. The universe is very busy and rarely
converges to a static state. Cellular structures also appear to move randomly.
However, only the initial state is random. Everything else in merge physics is
deterministic. You can observe the red universe in Figure 8.13.

Figure 8.13: The Red Universe

You might be wondering why I call Figure 8.13 the “red universe” when
it contains very little red. Because some versions of this book are printed in
black and white, I replaced the red background in Figure 8.13 with white for
aesthetic reasons. The vector that produces the “red universe” is shown here.

[ 0 .7975713097932856 , 0 .04290606443410394 ,
−0.24797271002387022 , 0 .9078879446367496 ,
0 .15307785453690795 , 0 .023971186791761356 ,
0 .9064792766828782 , −0.5248003131303094 ,
−0.1456779635182246 , 0 .6998501852403781 ,
−0.0026800425987849597 , −0.8630977046192441 ,
0 .06143751170130951 , 0 .8228374543146946 ,
−0.11483923870647716 , 0 .6399758923339068 ]
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Figure 8.14 shows a yellow universe that is very cell-like.

Figure 8.14: Yellow Cellular Universe

I removed the yellow background from the previous universe to support
black and white versions of this book. The cells have defined membranes and
are in motion. Unlike the red universe (Figure 8.13), the cells do not move
in strict horizontal or vertical directions. On the contrary, their movement is
much more erratic in all directions.

Figures 8.12 through 8.14 do not do justice to their universes since they
lack animation. The following YouTube video features the animated universes:

http://www.youtube.com/watch?v=Vphx4sYcI-o
The above video also provides an introduction to the multiverse viewer

example program in this section. This viewer displays several universes close
together so you can choose the most compelling ones for the genetic algorithm.

http://www.youtube.com/watch?v=Vphx4sYcI-o
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8.3.1 Understanding Merge Physics

Different terms often describe cellular automata and genetic algorithms. The
following definitions of these terms will help you understand this article:

• Cell: One ”grid square” in a universe. Each cell has a 3-sized vector that
represents an RGB color. Each element of this vector ranges between -1
and 1. The value -1 means the color component is fully off, whereas the
value of 1 means the color component is fully on.

• Crossover: When two parents produce an offspring genome that con-
tains some elements from both parents.

• Genome: One life form in a genetic algorithm’s population. Genomes
are usually vectors of a fixed length. For this article, genomes have
physics vectors of size 16.

• Mutation: When a single parent produces an offspring. The offspring
genome vector will contain a vector that represents a slight distortion of
the single parent.

• Physics: The rules that govern how the universe changes each time
frame. The physics of a universe is defined by 16 physical constants that
are stored in a vector.

• Time Frame: A universe’s physics is run once per time frame. The
screen is updated at the end of each time frame.

• Universe: A grid of cells that are usually initialized to random pixels.
Each universe must have physics that define how it changes each time
frame.

The merge physics universe is essentially a grid of pixels or cells. Unlike
Conway’s Game of Life, individual cells are not simply on or off. They contain
red, green, and blue vectors. Each cell has one numeric vector where each
component is in the range -1 to 1. A value of -1 means that the color component
is fully off whereas a value of 1 means the color component is fully on. For
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example, white would be [1,1,1] and black would be [-1,-1,-1]. Blue would
be [-1,-1,1]. Figure 8.15 shows this universe.

Figure 8.15: The Merge Physics Universe

This configuration allows the universe to represent any of the RBG colors.
Typically, the programmer initializes the universe to random color values by
setting each cell to a vector of three random numbers between -1 and 1.

The physics works by adjusting each pixel value during a time frame. Each
pixel is merged with a particular key color. A vector of 16 values defines the
exact means by which this merging happens. These 16 values are the universal
constants that define a universe’s physics. Changing these 16 values can create
many different universes. Some are very simple and quickly stabilize to a single
color. Others are more enthralling and produce complex patterns.

All physical constants must be between -1 and 1. You can think of these
16 vector constants in the following manner:
[ vo , v1 , v2 , v3 , v4 , v5 , v6 , v7 , v8 , v9 , v10 , v11 , v12 , v13 , v14 , v15 ]
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Figure 8.16 shows how these constants map to their key colors.

Figure 8.16: Merge Physics Vector Layout

The 16 physical constants are actually 8 pairs for each of the 8 key colors.
The key colors are black, red, green, yellow, blue, purple, cyan, and white.
The above chart shows the key colors in order by their index. The red, green,
and blue columns show the values for the RGB components. Just like the
universe pixels, -1 is full off and 1 is full on. The resulting color is shown in
the fifth column. The last two columns show the vector indexes for each of the
key color’s limit and percent. These values come from the physical constants
vector.

Each color pixel is considered 1 by 1. The algorithm also determines the
average value of all eight of the pixel’s neighbors, which are grid elements
immediately N, S, E, W, NE, NW, SW or SE of the current pixel. If the pixels
are on an edge, then a vector of three zeros is used for that pixel. This setting
works well because zero is the mean of -1 and 1, and the program calculates
it across the color components of all neighbor pixels. The following equation
determines the mean of the color vectors of the neighbors:

µ =

N∑
i=1

ri + gi + bi

3N (8.1)

N is the number of neighbors. N is typically 8; however, you can decrease
it for edge pixels. You can also consider the off-grid pixels as zeros. Both
approaches for handling the pixels on the edge are mathematically equivalent.
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The calculated value for the mean (mu) determines the direction that the
key color moves. We consider each of the key colors in the order of their limit
values. Once we find a key color with a higher limit value than the mean, we
know the target key color. Next, the percent value (from the physical constant
vector) sets the distance of the key color we should move. If the percent value
is -1, then the current pixel will not change. If the percent value is 1, then the
current pixel will immediately obtain the value of the key color. The percent’s
are stored in the range -1 to 1, so you should denormalize them to actual
percent values. You can accomplish this simple process with the following
formula:
p = \ f r a c {x+1}{2}

The same value p represents each of the three-color components. The following
calculation shows how we finally determine the value for the new cell (c), or
pixel, based on the percent (p) for the red (r), green (g) and blue (b) values.
We are basically moving the pixel vector towards the key color (k).

cn+1 = [rn + p(rk − rn), gn + p(gk − gn), bn + p(bk − bn)] (8.2)
This section has an example of the multiverse viewer. Some of the program-
ming languages in the examples execute many adjacent universes through
multithreading. Whether an example uses multithreading depends on the pro-
gramming language in the example. Refer to the README file to see whether
each language supports multithreading.

Genetic algorithm constructs can create new universes. Start with a set
of random universes, and the user can kill off more common universes. As a
result, multiple, dynamic universes can mate and create an offspring universe.
A single dynamic universe can create an offspring that is a mutated version
of the parent. The multithreaded code allows several universes to run fairly
quickly on a multicore machine.
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8.4 Chapter Summary

This chapter introduced cellular automata (CA) that modify grids based on
a simple set of rules. Most CAs are created primarily for entertainment to
produce animated effects. However, CAs can also have more practical appli-
cations, such as simulation, optimization, and cryptography. CAs can exist in
higher dimensions spaces; however, this book focuses on CAs in 2D grids.

Elementary cellular automata (ECA) are a set of 256 simple CAs based
on a rule number. Many of these CAs are highly repetitive; however, some
rules produce very unique patterns. ECAs create a single static image without
any animation. Some ECAs also generate random numbers in the computer
program Mathematica.

Conway’s Game of Life is an animated CA that has garnered a lot of
attention since its introduction in 1970 because it can produce very complex
patterns with a simple set of four rules. A variety of patterns have been
discovered for the Game of Life that includes gliders, space ships, guns, and
other objects.

Merge physics is a simple cellular automaton that I created in 2014. It
allows you to evolve your own CA through a human-based genetic algorithm
(HBGA). The user receives a variety of CAs and can choose his favorites for
crossover and mutation.

In the next chapter, we will build upon cellular automata and introduce
artificial life (ALIFE). I will demonstrate an ALIFE application that allows
plants to evolve to take better advantage of limited resources, such as sunlight
and water.
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Chapter 9

Artificial Life

• Capstone Projects

• Drawing a plant

• Animating plant growth

• Evolving the ultimate seed

I launched this book as a Kickstarter project, and backers could choose a
capstone project as one of the rewards. A capstone project is a lengthy ex-
ample that utilizes many of the techniques in this book. Backers suggested
several projects and ultimately chose an artificial life project. Because my
Kickstarter supporters also expressed considerable interest in a data science
capstone project, Chapter 10 features a modeling capstone. Furthermore, I
will present this project in three parts to reflect the program’s stages as I
developed them.

The Chapter 9 project is the design of an artificial plant box that allows a
seed to grow to a fully mature plant. In addition to the example source code, I
include my solution to this project. The program generates seeds that become
superior plants because of an evolutionary algorithm. The seed begins with
three living cells and follows an evolvable set of rules that govern the type of
plant produced. Figure 9.1 shows a plant grown from this program.
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Figure 9.1: Finished Version of the Plant Box

As you can see from the above figure, a full-grown plant includes leaves,
stems, and a root system. The above plant evolved over several hundred
generations.

To create this project, I completed three milestones that I discuss in later
sections of this chapter. Specifically, I will provide an overview of these mile-
stones as well as describe the challenges that I encountered. If you want to see
the exact implementation of any part of this project, refer to the source code
examples for this book.
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I intend for this section to be a possible starting point for your own artificial
life project. I hope that my program will give you some ideas for your own
projects. To begin, I typically have a general plan of what I want to evolve.
However, if I am going to evolve a plant, my approach is somewhat different
from the moving cells in Chapter 8. I like to nudge the universe in the desired
direction, but I also want to give it latitude to grow into something that might
surprise me. This process is often trial and error until the universe evolves
something worthwhile.

9.1 Milestone 1: Drawing a Plant

For the first part of this project, we simply display the seed that will grow into
a plant. No matter how they evolve, all plants in the project will start from
the same seed. As we see in Figure 9.2, this seed will occupy three vertical
grid cells of the universe grid.
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Figure 9.2: Seed

To render the previous image, the universe must contain a rectangular grid
that is 50-wide by 100-high. Each grid cell in this universe has the following
attributes that determine its appearance:

• Leafiness: This affects how green (leaf) or brown (trunk) is the cell. 1.0
is fully leaf, 0.0 is fully trunk.

• Energy: This defines the amount of energy between [0 and 1]. A dead
cell is 0.

• Nourishment: This shows the amount of nourishment between [0 and
1].

• Calculated Sunlight: This indicates the calculated sunlight exposure.

• Calculated Water: This measures the calculated water exposure.
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A cell is dead if the energy value is 0. As a result, the cell appears transparent.
In other words, blue will show if the cell is above the horizon. If it is below
the horizon, the cell will have the color of soil. The default settings for the
horizon, or ground line, are two-thirds down from the top, or 66 pixels. If
energy is present, then the cell will display a value between brown and green
depending on the leafiness attribute. Grid cells below the ground line are
roots, and the program must always draw them as pure white.

As you can see from Figure 9.2, the seed consists of the following three
parts: root, stem, and leaf. The root is one unit below the ground level; the
stem is right at ground level, and the leaf is one unit above ground level. The
leaf has a maximum leafiness value, and the stem is halfway between leafy and
trunk.

• Leafiness (for root): 0

• Nourishment (for root): 1

• Energy (for root): 1

• Leafiness (for stem): 0.5

• Nourishment (for stem): 1

• Energy (for stem): 1

• Leafiness (for leaf): 0

• Nourishment (for leaf): 1

• Energy (for leaf): 1

All other cells in the grid should have all attributes set to 0. This information
should help you create a program that displays Figure 9.2. If you need more
guidance, refer to the capstone examples that have many relevant comments.
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To draw the plant, you must determine the color for every living cell. As
a result, you need a palette of several combinations of red, green, and blue
(RGB).

• Fully leafy color (greenish) = [0, 255, 0]

• Fully stem color (brownish) = [165, 42, 42]

• Sky color (bluish) = [135, 206, 250]

• Dirt color (grayish) = [96, 96, 96]

• Root color (white) = [255,255,255]

The above colors specify the values of the RGB vector [red, blue, green]. The
RGB components range from 0-255. Any part of the plant below ground simply
has the root color. The gradient between the fully leafy and stem colors affects
the parts of the plant above ground. The leafiness attribute, which determines
the pixel’s distance between the stem and leafy color, is necessary to calculate
the gradient. Furthermore, these values are ideal to prepopulate a table. The
pseudocode in Listing 9.1 shows these values in action.

Listing 9.1: Generate Leafiness Gradient
# Calcu la te the ranges we must cover .
gradentRangeRed = LEAF GREEN. red − STEMBROWN. red
gradentRangeGreen = LEAF GREEN. green − STEMBROWN. green
gradentRangeBlue = LEAF GREEN. blue − STEMBROWN. blue
# Determine the maximum range between red , green & blue .
maxRange = max(max(

abs ( gradentRangeRed ) ,
abs ( gradentRangeGreen ) ) ,
abs ( gradentRangeBlue ) ) ;

# Sca l e each o f the c o l o r ranges to this maximum range .
# Because each c o l o r component has a d i f f e r e n t range , i t i s
# nece s sa ry to move by a d i f f e r e n t amount in each RGB component .
sca leRed = ( double ) gradentRangeRed / ( double ) maxRange ;
sca leGreen = ( double ) gradentRangeGreen / ( double ) maxRange ;
s ca l eB lue = ( double ) gradentRangeBlue / ( double ) maxRange ;
# Create an array to hold the g rad i ent c o l o r s
g rad i ent = new [ maxRange ] ;
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# Calcu la te the g rad i en t s
for i from 0 to maxRange−1:

g rad i ent [ i ] = new Color (
int (STEMBROWN. getRed ( ) + ( i ∗ sca leRed ) ) ,
int (STEMBROWN. getGreen ( ) + ( i ∗ sca leGreen ) ) ,
int (STEMBROWN. getBlue ( ) + ( i ∗ s ca l eB lue ) ) )

Once the above code completes, you now have a gradient color table stored
in the gradient variable. Because the leafiness attribute is a percent, you can
determine the appropriate color by multiplying leafiness by the length of the
table.

9.2 Milestone 2: Animating Plant Growth

The first milestone created a program capable of drawing a plant universe grid.
Animation is rapidly drawing a series of frames. For the second milestone, you
will create an animated plant that allows you to observe its growth from a seed
to a full-grown plant as seen in Figure 9.3.
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Figure 9.3: Growing Plant

The above figure shows only a single frame of the entire growth sequence.
The following URL has a video of a plant growing and one of seeds evolving
in the third milestone.

https://www.youtube.com/watch?v=-eC-PyCMwn0
To accomplish this animation, you will need two different systems work-

ing together. First, a physics system controls the plant structural integrity,
light, water absorption, and nutrient circulation inside of the plant. Second,
the plant growth system manages its development based on the plant’s DNA
vector.

9.2.1 Plant Physics

The physics class defines limits on the growth that the plant’s DNA wants to
implement. It is important to keep the physics as simple as possible. Because
the plants have evolutionary capabilities, they should be able to evolve into a

https://www.youtube.com/watch?v=-eC-PyCMwn0
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reasonable universe. However, some tweaking might be necessary to define the
universe’s physical characteristics. Without these adjustments, your universe
will not produce life.

Overall, I was able to keep the physics relatively simple for this universe.
However, controlling the circulation while forcing the plant to grow roots was
difficult for my design. I also had to make some adjustments in order to attain
a good ratio of shade that would produce nice, leafy plants that were not too
green in areas away from the sun.

Physics determines how the plant absorbs sunlight and distributes nour-
ishment. The growth process of the cell mimics nature. Cells acquire sunlight
from above, and the light stops at the ground level. More leafy material ab-
sorbs sunlight and reduces it because of shade. Less leafy material provides
less shade and can circulate energy and nourishment better. Additionally, the
cells obtain water from an underground stream. For the sake of simplicity,
the stream is the only source of water. The deeper the roots grow, the more
water they receive. Thus, the values for these growth phases of the cells are
calculated energy and nourishment values, and they represent the actual
energy produced from sunlight as well as the nourishment provided by water.
Each cell stores these values for its growth phases.

The physics engine allows you to determine water and light distribution.
You calculate light in a top-down manner with the strongest light at the top
of the universe rectangle. The program creates a vector with a width equal
to the width of the universe and initializes it to 1’s. This vector represents
the strength of light, and each value in the vector will decrease as the plant
absorbs the light. You calculate water with a bottom-up method, just like
light. Figure 9.4 shows the sun and water vectors.
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Figure 9.4: Sun and Water

The program performs the sun and water calculations in two separate
passes. The sunlight pass occurs first, followed by the water passes. Both
passes run the entire height of the grid. However, once the sunlight vector
crosses the ground level, it becomes all zeros. Likewise, once the water vector
crosses the ground line, it reduces completely to zero.

Shade decreases the value of each element of the light vector that crosses
a living grid cell. The amount of decay is equal to the leafiness times 0.1. For
example, if a light vector element of 0.5 crossed a living cell with a leafiness of
0.9, we would multiply 0.9 by 0.1 and obtain a decay of 0.09. Then we would
multiply the light vector value of 0.5 by 0.09. The subsequent decay value of
0.09 would reduce the 0.5 light vector value to only 0.045. This same process
occurs for water.

The decay discussed in the previous section accounts for shade and water
absorption; however, it does not deal with circulation in the plant. Even
though the sun and water vectors translate into energy and nourishment for
the plant, individual cells can also receive energy and nourishment through
circulation. This process allows energy from the sun to reach the roots and
nourishment from the ground to reach the leaves. Figure 9.5 shows circulation.
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Figure 9.5: Plant Circulation

The above figure demonstrates how we calculate the energy, labeled e,
and the nourishment, labeled n. Each living grid cell calculates the energy
and nourishment from circulation. The energy from circulation (e) is the
maximum-calculated energy from the three cells immediately above it. In the
same way, the nourishment (n) from circulation is the maximum-calculated
nourishment from the three grid cells below. The program counts only living
grid cells in these maximums. The current cell’s calculated nourishment will
be set to the maximum of the circulation nourishment and the water vector.
Additionally, you need to set the calculated energy for a cell to the maximum
of the sunlight vector and the calculated energy. Additionally, cells will die if
their nourishment drops below a threshold value.

For the sake of simplicity, circulation moves in a single direction. Nour-
ishment goes up while energy goes down, as seen in Figure 9.5. Circulation
presented a challenge for this project. On one hand, I did not want overly
complex circulation physics. On the other hand, eliminating circulation would
remove the reason to create stems and trunks. Consequently, I experimented
with several methods of circulation. The best tradeoff between complexity and
the forced evolution of stems and trunks was the final method that I tried.
The above figure illustrates this method.
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Another challenge was creating enough roots to support the plant. If we did
not introduce a root limitation, a single root would be sufficient to nourish the
entire plant. The sun pass counts the number of plant cells above ground, and
the water pass counts the number of living plant cells below ground. Growth
will only occur if the root ratio supports it. The next section contains the
exact process to calculate the root ratio.

9.2.2 Plant Growth

For the second milestone, you will need to provide a plant DNA vector. Listing
9.2 shows an effective DNA vector.

Listing 9.2: Sample Plant Vector
[ 0 .08414097456375995 , 0 .11845586131703176 ,
0 .1868971940834313 , 0 .4346911204161327 ,
0 .024190631402031804 , 0 .5773526701833149 ,
0 .8997253827355136 , 0 .9267311086327318 ,
0 .04639229538493471 , 0 .8190692654645835 ,
0 .06531672676605614 , 0 .026431639742068264 ,
0 .31497914852215286 , 1 .0276526539348398 ,
0 .03303133293309127 , 0 .35946010922382937 ]

Figure 9.1, previously mentioned, shows the final growth of the plant. The
plant DNA vector is essentially the program that the plant runs to determine
how it should grow. Ultimately, the physics that we saw in the previous section
limits the plant’s development because it must support growth in a way that
provides proper energy and nourishment.

A plant genome is an array of four vectors that has a length of 4. Therefore,
the entire genome is 4*4 = 16 values. Each of the four vectors corresponds to
a cell’s DNA vector. A cell info vector provides information about the state
of a grid cell. The grid cell can be either living (filled) or dead (empty).
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The four numeric elements of each of the vectors contained in the plant’s
DNA vector are the following:

• Element 0: The height of the cell. 1.0 for the last row and 0.0 for the
first row.

• Element 1: The amount of sunlight (for surface cells) or water (for un-
derground cells) exposure for this cell.

• Element 2: Crowding by neighbors.

• Element 3: Nourishment for this cell.

The four vectors, composed of the elements described in the previous section,
are shown here.

• Vector 0: Stem desired

• Vector 1: Leaf desired

• Vector 2: Growth option #1

• Vector 3: Growth option #2

Vectors 0 and 1 go together. For each living cell, we determine if its info
vector is closer to vector 0 or vector 1. If it is closer to stem (0), then we
decrease the leafiness attribute of the cell. Leaves can only move towards the
stem. However, a stem cannot change back into a leaf. Vectors 2 and 3 also
go together. When a plant cell is eligible for growth, it evaluates all neighbor
cells to select where it wants to grow. Thus, it chooses the neighbor cell that
is closest to either vector 2 or 3. No growth occurs if the candidate cell is not
lower than a specific threshold of vector 2 or 3.

For growth to occur, the program must maintain a ratio between the leafy
surface portion and the roots. This ratio is calculated as follows:
root r a t i o = sum( root nourishment ) / sum( l e a f i n e s s )

If this ratio is less than 0.5, then roots can grow. If this ratio is above 0.5, then
surface growth is allowed. This ratio ensures that the roots can sufficiently
support the surface plant.

To perform the growth, we loop over every grid cell in the universe.
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9.3 Milestone 3: Evolving a Plant

Evolutionary algorithms, such as genetic algorithms, particle swarm optimiza-
tion, and ant colony optimization, can evolve the DNA vector that grows
plants. To learn how to produce better plant DNA vectors, the previous vol-
ume of this series contains examples of optimization algorithms like simulated
annealing and Nelder-Mead.

This project uses a genetic algorithm, as introduced in Chapter 3. The
GA population model matches our goal of simulating a population of plants
that evolves to produce the best plant. When you run the example for this
milestone, you will see an ever-evolving plant that represents the best plant
found so far, as seen in Figure 9.6.
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Figure 9.6: Evolving a Plant

This example will run indefinitely and print out the DNA vector of the top
plant for each generation. Of course, the above plant is only on generation 11
and will improve considerably with subsequent generations.
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9.3.1 Scoring a Plant

A scoring function is the process that determines the quality of a particular
plant. This algorithm is very simple; the greener the plant is, the higher
the score. Plants have 100 cycles to grow before the program evaluates their
greenness. Listing 9.3 shows the pseudocode that scores a plant. Listing 9.3
also features the process that determines a plant’s score.

Listing 9.3: Plant Scoring
s c o r e = 0
count = 0
# Assume that un ive r s e conta in s c e l l s a f t e r 100
# c y c l e s o f a p a r t i c u l a r p lant growing .
for each c e l l in un ive r s e :

i f c e l l i s a l i v e :
count = count + 1
i f c e l l i s root :

# Give p a r t i a l c r e d i t for a root
s co r e = sco r e + 0 . 5 ;

else :
s c o r e = sco r e + c e l l . l e a f i n e s s

# Calcu la te average l e a f i n e s s and roo t s
s co r e = sco r e / count

The score is the average leafiness by living cell, with roots counting as 0.5. Even
though branches with low leafiness do not help the score, they are necessary
because they move energy and nourishment around the plant. This is just one
approach to scoring the plant, and the score function should be designed to
create whatever type of organism you desire.

9.4 Chapter Summary

Artificial life is the simulation of living organisms with a computer. Research
and entertainment applications frequently utilize artificial life. The cellular au-
tomata in the last chapter are a somewhat restricted form of artificial life. The
capstone project for this chapter takes many concepts from cellular automata
and combines them with the evolutionary algorithms from earlier chapters.
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This capstone project featured a plant simulation. A fixed-length vector
served the role of plant’s DNA. A physics component detailing the collec-
tion and circulation parameters for energy and nourishment constrained the
growth. Ultimately, the physics limits the plant’s growth potential. The suc-
cessful plants evolve because they can maximize growth within the restrictions
established by physics.

This chapter introduced a capstone project and demonstrated the synthesis
of material from the entire book. Although artificial life is a fascinating area of
research, day-to-day business operations rarely take advantage of its possibili-
ties. Data science, on the other hand, is an area in which many AI techniques
can be applied for practical business scenarios. Thus, Chapter 10 will intro-
duce a data science capstone project that highlights one of these applications.
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Chapter 10

Modeling

• Capstone Projects

• Drawing a plant

• Animating plant growth

• Evolving the ultimate seed

The capstone project from Chapter 9 demonstrated an application of nature-
inspired algorithms for entertainment or simulation. This chapter will present
a capstone project on modeling, a business-oriented use for artificial intelli-
gence and part of a much broader field called data science.

Because data science is a relatively new field, it can be difficult to define.
Drew Conway, a leading data scientist, defines it as the intersection of the
three fields: hacking skills, math and statistics knowledge, and substantive
expertise. Figure 10.1 depicts this definition.
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Figure 10.1: Conway’s Data Science Venn Diagram

Hacking skills are essentially a subset of computer programming. Although
data scientist does not necessarily need the infrastructure knowledge of an
information technology (IT) professional, these technical skills will permit him
or her to create short, effective programs for processing data. In the field of
data science, information processing is called data wrangling.

Math and statistics knowledge covers statistics, probability, and other in-
ferential methods. Substantive knowledge describes the business knowledge as
well as the comprehension of actual data. If you combine only two of these
topics, you don’t have all the components for data science, as Figure 10.1
illustrates. In other words, the combination of statistics and substantive ex-
pertise is simply traditional research. Those two skills alone don’t encompass
the capabilities (i.e., machine learning) required for data science.
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My book series deals with hacking skills and math and statistical knowl-
edge, two of the circles in Figure 10.1. Additionally, it teaches you to create
your own models, which is more pertinent to the field of computer science
than data science. Substantive expertise is more difficult to obtain because it
is dependent on the industry that utilizes the data science applications. For
example, if you want to apply data science in the insurance industry, substan-
tive knowledge refers to the actual business operations of these companies.

10.1 Competitive Data Science

To demonstrate this field of technology, I need data. Kaggle, a website that
hosts data science competitions, is a good source of data.

http://www.kaggle.com
Kaggle runs competitions in which data scientists compete in order to pro-

vide the best model to fit the data. The capstone project of this chapter
features Kaggle’s Titanic data set. The following URL has the Titanic com-
pletion:

https://www.kaggle.com/c/titanic-gettingStarted
Before we get started with the Titanic example, it’s important to be aware

of some Kaggle guidelines. First, most competitions end on a specific date.
Website organizers have currently scheduled the Titanic competition to end on
December 31, 2014. However, they have already extended the deadline several
times, and an extension beyond 2014 is also possible. Second, the Titanic data
set is considered a tutorial data set. In other words, there is no prize, and your
score in the competition does not count towards becoming a Kaggle Master.
To achieve the highest rank, you must compete in three Kaggle completions,
place in the top 10 of a competition once, and score in the top 10% twice. Each
Kaggle completion has a leaderboard that shows the top contenders. Figure
10.2 depicts the Titanic leaderboard from July 15, 2014.

http://www.kaggle.com
https://www.kaggle.com/c/titanic-gettingStarted
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Figure 10.2: Kaggle Leaderboard

Kaggle scores completions in a variety of ways. The Titanic competition
gives you a set of passengers, and you must predict whether they lived or died.
The previous scores represent the percentage of passengers that you succeed
in predicting. A score of 1.0 is perfect accuracy, and a score of 0.5 means that
half of your predictions were incorrect.

Furthermore, Kaggle gives you two CSV files named test and train. Both
files give you attributes, often called features, about the passengers. The train
file provides the outcome that you are trying to forecast. As you work with the
Titanic problem, you can build your model with the train data set. However,
the test data set is essentially a quiz; you fill in the answers to be graded. Once
you complete your predictions for the test data set and submit it, Kaggle scores
your work.

As you can observe from Figure 10.2, Kaggle allows multiple submissions.
Although you work with the same test data, you receive a different score
every time that you submit. Kaggle also places a limit on the number of
submissions per day. Because the test data usually contain a lot of rows, brute-
force guessing will not be productive. Additionally, Kaggle administrators
view the registration of multiple accounts for the purpose of gaining more
daily submissions as cheating, and they strictly enforce the rule, occasionally
disqualifying individuals for this behavior.
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The leaderboard also displays some competitors who received a perfect 1.0
score in the Titanic competition. Nevertheless, their achievement is question-
able because Wikipedia contains a complete list of Titanic passengers and their
fates that anyone can easily search.

http://en.wikipedia.org/wiki/Passengers_of_the_RMS_Titanic
Consequently, even without programming skills, you could receive a per-

fect score by simply marking the correct outcome in the test data after you
researched the passengers’ fates in Wikipedia. It’s important to remember,
though, that the Titanic data set is a tutorial, not an actual competition. The
general consensus in Kaggle’s Titanic forums is that any score above 85% has
been manipulated with previously published information.

In other words, predicting with great accuracy every passenger’s fate is not
possible because the final hours of Titanic were extremely chaotic. Although
women with higher-classed tickets had the best chances of survival, accidents
may have occurred or panicked passengers may not reached a lifeboat. Thus,
individuals with a completely unpredictable outcome are called outliers.

Lifeboat #1 added a number of outliers. Although this lifeboat had 40
seats, it launched with just 12 people. Two passengers aboard were women,
and there were no children. Once news spread about this disparity, Lifeboat
#1 caused a lot of controversy, and allegations of bribery surfaced. Therefore,
no reasonable model could predict the outcome of the occupants of Lifeboat
#1. For example, John Jacob Astor, one of the richest men in 1912, was a
prominent Titanic victim. Given the alleged bribery of the crew, Astor should
have been a survivor in Lifeboat #1. However, he was denied a seat on another
lifeboat despite his request to evacuate with his pregnant wife. To solve the
dilemma of Lifeboat #1, an overfit model might learn to predict the outcomes
of the passengers. However, you should avoid overfitting because the model
has only memorized parts of the data. We want to create a model that learns
from the data; one that memorizes data is useless.

http://en.wikipedia.org/wiki/Passengers_of_the_RMS_Titanic
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10.2 Milestone 1: Wrangling the Data

Data are very rarely in a form that a model can use. Listing 10.1 exemplifies
this fact as it shows the beginning of the Titanic training data.

Listing 10.1: Titanic Training Data
PassengerId , Survived , Pclass ,Name, Sex , Age , SibSp , Parch , Ticket , Fare ,

Cabin , Embarked
1 ,0 ,3 , ”Braund , Mr . Owen Harr i s ” , male , 2 2 , 1 , 0 ,A/5 21171 ,7 . 25 , , S
2 ,1 ,1 , ”Cumings , Mrs . John Bradley ( Florence Br iggs Thayer ) ” , female

, 3 8 , 1 , 0 ,PC 17599 ,71 .2833 ,C85 ,C
3 ,1 ,3 , ” Heikkinen , Miss . Laina ” , female , 2 6 , 0 , 0 ,STON/O2 .

3101282 ,7 .925 , , S
4 ,1 ,1 , ” Fut r e l l e , Mrs . Jacques Heath ( L i l y May Peel ) ” , female

, 35 , 1 , 0 , 113803 , 53 . 1 , C123 , S
5 ,0 ,3 , ” Allen , Mr . William Henry” , male , 35 , 0 , 0 , 3 73450 , 8 . 05 , , S
6 ,0 ,3 , ”Moran , Mr . James” , male , , 0 , 0 , 3 30877 , 8 . 4583 , ,Q

In the training data, the first row contains the column headings that describe
the attributes, or features, for your predictions. The outcome is the second
column, which is named Survived. As you can observe, several columns are
not numerical in the data set. However, models must deal with numeric data.
The training set columns are the following:

• Survival: categorical (1,0), 1 means lived, 0 means died.

• Pclass: ordinal (1,2,3), this is the class of the ticket; 1 is first class (most
expensive) whereas 3 is 3rd class (least expensive).

• Name: textual

• Sex: categorical (m,f)

• Age: numeric, missing values

• Sibsp: numeric. The number of siblings/spouses aboard.

• Parch: numeric. The number of parents/children aboard.

• Ticket: textual, this is the ticket number.
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• Fare: numeric, missing values

• Cabin: textual, this is the cabin number.

• Embarked: categorical (c,q,s), missing values. This is the port where
the passenger got on the boat. C for Cherbourg, Q for Queenstown, S
for Southampton

The training set contains numeric, categorical, and ordinal values. Categorical
values are unordered and non-numeric, such as the embarked attribute. In
other words, passengers departed from the ports in a specific order, but that
order is not is not relevant for the model. On the other hand, the attribute
pclass has an order and is therefore an ordinal. Because the passenger classes
are numbers, we will treat pclass as numerical. We must also deal with missing
values for the attributes age, fare, and embarked. As a result, we will attempt
to interpolate these values. Interpolation means taking an average. However,
we don’t want to restrict the values that we average. For example, if we take
the average fare of all three classes, we can better interpolate the fare when
we know the class. The average fare for first class was 88 dollars; the average
fare for third class was 13 dollars. Taking the average by class, rather than
over all passengers, gives a more accurate result.

The output from my normalization process is shown here.
Master : Mean Age : 5 .48 ( Count : 76 , surv ived : 0 .5789473684210527 ,

male . surv ived : 0 .5789473684210527)
Mr . : Mean Age : 32.25215146299484 ( Count : 915 , surv ived :

0 .16174863387978142 , male . surv ived : 0 .16174863387978142)
Miss . : Mean Age : 21.795235849056603 ( Count : 332 , surv ived :

0 .7108433734939759 , female . surv ived : 0 .7108433734939759)
Mrs . : Mean Age : 36.91812865497076 ( Count : 235 , surv ived :

0 .7914893617021277 , female . surv ived : 0 .7914893617021277)
Mi l i t a ry : Mean Age : 36.91812865497076 ( Count : 10 , surv ived : 0 . 4 ,

male . surv ived : 0 . 4 )
Clergy : Mean Age : 41 .25 ( Count : 12 , surv ived : 0 . 0 , male . surv ived :

0 . 0 )
Nob i l i t y : Mean Age : 41.166666666666664 ( Count : 10 , surv ived : 0 . 6 ,

male . surv ived : 0 .3333333333333333 , female . surv ived : 1 . 0 )
Dr : Mean Age : 43.57142857142857 ( Count : 13 , surv ived :

0 .46153846153846156 , male . surv ived : 0 .36363636363636365 ,
female . surv ived : 1 . 0 )
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Total known s u r v i v a l : Mean Age : 29.881137667304014 ( Count : 891 ,
surv ived : 0 .3838383838383838 , male . surv ived :
0 .18890814558058924 , female . surv ived : 0 .7420382165605095)

Embarked Queenstown : Mean Age : ( Count : 77 , surv ived :
0 .38961038961038963 , male . surv ived : 0 .07317073170731707 ,
female . surv ived : 0 . 75 )

Embarked Southampton : Mean Age : ( Count : 644 , surv ived :
0 .33695652173913043 , male . surv ived : 0 .1746031746031746 , female
. surv ived : 0 .6896551724137931)

Embarked Cherbourg : Mean Age : ( Count : 168 , surv ived :
0 .5535714285714286 , male . surv ived : 0 .30526315789473685 , female
. surv ived : 0 .8767123287671232)

Most common embarked : Mean Age : S
Mean Age Male : 30.58522796352584
Mean Age Female : 28.68708762886598
Mean Fair 1 s t Class : 87.5089916408668
Mean Fair 2 s t Class : 21.1791963898917
Mean Fair 3 s t Class : 13.302888700564969

The data provokes some interesting observations. Although the name field
might seem unhelpful at first glance because it is purely textual, the pre-
fixes, such as “Mr.,” “Miss,” “Ms.,” “Master,” “Col.,” “Major,” “Count,” and
“Rev.,” could provide useful data for prediction. However, data wrangling is
necessary because these values are locked away in the name text.

I classified the prefixes in the following way: “Master,” “Mr.,” “Miss,”
“Mrs.,” “Military,” “Nobility,” “Doctor,” and “Clergy.” The first lines of the
output show you the survival rates for each category.

The term “master” might be confusing in modern English. The Merriam-
Webster on-line dictionary lists an archaic definition for it.

Master (2): a youth or boy too young to be called mister –used as a title
While this definition is outdated in 2014 English, it was commonly em-

ployed in 1912 English. For our purposes, it helps us determine the ages of
Titanic passengers. In the data set, the average age for “master” was 5.48
years; the average age for “mister” was 32 years. The average age for nobility
was 41 years.
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Titles also seem to influence survival rates. Despite the young age of “mas-
ter,” only 58% of the boys on the ship survived. None of the clergy survived.
On the other hand, all of the female nobles survived. Additionally, 40% of the
male military, and 60% of the male nobility survived.

Lastly, the departure city also seems to affect the passengers’ fates. Queen-
stown and Southampton both had survival rates around 30% whereas 55% of
the passengers who boarded at Cherbourg lived. Besides departure city, the
listing shows other statistics that I calculated.

These values helped me to determine the appropriate data parts for pre-
diction. Ultimately, the model can accept only numeric data. This input is
the feature vector; the following points show the feature vector for Titanic:

• Age: The interpolated age normalized to -1 to 1.

• Sex-male: The gender normalized to -1 for female, 1 for male.

• Pclass: The passenger class [1-3] normalized to -1 to 1.

• Sibsp: Value from the original data set normalized to -1 to 1.

• Parch: Value from the original data set normalized to -1 to 1.

• Fare: The interpolated fare normalized to -1 to 1.

• Embarked-c: The value 1 if the passenger embarked from Cherbourg, -1
otherwise.

• Embarked-q: The value 1 if the passenger embarked from Queenstown,
-1 otherwise.

• Embarked-s: The value 1 if the passenger embarked from Southampton,
-1 otherwise.

• Name-mil: The value 1 if passenger had a military prefix, -1 otherwise.

• Name-nobility: The value 1 if passenger had a noble prefix, -1 otherwise.

• Name-Dr.: The value 1 if passenger had a doctor prefix, -1 otherwise.

• Name-clergy: The value 1 if passenger had a clergy prefix, -1 otherwise.
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I experimented with several feature vectors and ultimately chose the ones that
I just listed. Some prefixes were only for age interpolation while others were
Boolean flags in the feature vector. I normalized every value between -1 and 1.
The RBF neural network model works best with this input range. Normalizing
categorical values to separate features is important. I normalized the three
separate features for the three ports from which the passengers embarked.
Because pclass is ordinal, a single feature is required.

10.3 Milestone 2: Build a Model

The Titanic data set can accommodate many models. Of course, some models
perform better for certain data sets than others. Simple decision trees were
reported to achieve scores in the upper 70’s. Hybrid approaches, involving
gradient boosting machines (GBM), were popular among competitors and re-
ceived scores in the lower 80’s. The example in the book utilizes an RBF
neural network because I presented only this model.

To build the model, cross-validation gives me a good estimate of my actual
Kaggle score for a particular model. Cross-validation is a statistical technique
that allows me to work with a single set of data for both training and validation.
Cross-validation attempts to combat overfitting by using different parts of the
data set for training and validation. To understand overfitting, consider a
student preparing to take a certification exam. To help the student prepare,
the certification provider offers a practice exam that the student readily takes
until he achieves a passing grade. Despite the extensive work with the practice
exam, the student’s chances of success on the real certification exam are not
necessarily guaranteed.

In all likelihood, the student will not do well on the real exam. The student
has undoubtedly memorized the exam after several attempts; he has not really
learned the material in spite of the false hope generated by many retries at
the same practice exam. The same issue can occur with a model. After many
training runs with the Titanic data, our model might begin to memorize rather
than learn. At some point, we may even achieve a 100% training score, which
does not mean that we will get a 100% score on Kaggle. Consequently, we
need a way to predict our actual Kaggle.
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Overfitting typically occurs on an RBF network when training has pro-
gressed for too long. Extremely lengthy training runs will continue to improve
the training score of the RBF indefinably as the score slowly approaches 100%.
Because these sessions encourage an RBF network to memorize, we need a pro-
cess that stops training early before memorization begins.

To implement early stopping, we divide the data into a training portion
and a validation portion. As its name implies, the training data is only for
training. Once every training iteration has ended, the model is evaluated with
the validation data. Training stops once the validation score ceases to improve.
Keep in mind that the validation data only evaluates when to stop; it does not
improve the training score. The final evaluation score will give us a reasonably
good estimate of our Kaggle score.

We can do better than a single validation and training partition. Cross-
validation breaks the training set into folds. I will utilize five folds and train
five models over five cycles for this example. Because we use five folds, we
will have five cycles. During each cycle, one of the folds plays the role of
validation, and the others are combined into a training set. Figure 10.3 shows
this process.

Figure 10.3: Cross-Validation

During each training cycle, we build a separate model and stop training
once the network no longer improvises its score with the validation fold. Par-
ticle swarm optimization (PSO) trains the model. Once we stop, the average
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validation score over all cycles gives us an even better estimate of what our
future Kaggle score

The ultimate goal is to achieve a good score on data that the neural network
has never seen. As a result, the validation set provides a good test for the
network. We stop once the validation score is no longer improving during
training.

You can see the complete training process in the listing below.
Cross v a l i d a t i o n f o l d #1/5
Fold #1, I t e r a t i o n #1: t r a i n i n g c o r r e c t : 0 .6067415730337079 ,

v a l i d a t i o n c o r r e c t : 0 .6536312849162011 , no improvement : 0
Fold #1, I t e r a t i o n #2: t r a i n i n g c o r r e c t : 0 .6067415730337079 ,

v a l i d a t i o n c o r r e c t : 0 .6536312849162011 , no improvement : 1
Fold #1, I t e r a t i o n #3: t r a i n i n g c o r r e c t : 0 .6067415730337079 ,

v a l i d a t i o n c o r r e c t : 0 .6536312849162011 , no improvement : 2
. . .
Fold #1, I t e r a t i o n #28: t r a i n i n g c o r r e c t : 0 .6067415730337079 ,

v a l i d a t i o n c o r r e c t : 0 .6536312849162011 , no improvement : 27
Fold #1, I t e r a t i o n #29: t r a i n i n g c o r r e c t : 0 .6067415730337079 ,

v a l i d a t i o n c o r r e c t : 0 .6536312849162011 , no improvement : 28
Fold #1, I t e r a t i o n #30: t r a i n i n g c o r r e c t : 0 .6123595505617978 ,

v a l i d a t i o n c o r r e c t : 0 .659217877094972 , no improvement : 0
Fold #1, I t e r a t i o n #31: t r a i n i n g c o r r e c t : 0 .6853932584269663 ,

v a l i d a t i o n c o r r e c t : 0 .7541899441340782 , no improvement : 0
Fold #1, I t e r a t i o n #32: t r a i n i n g c o r r e c t : 0 .6853932584269663 ,

v a l i d a t i o n c o r r e c t : 0 .7541899441340782 , no improvement : 1
. . .
Fold #1, I t e r a t i o n #239: t r a i n i n g c o r r e c t : 0 .8047752808988764 ,

v a l i d a t i o n c o r r e c t : 0 .8491620111731844 , no improvement : 100
Fold #1, I t e r a t i o n #240: t r a i n i n g c o r r e c t : 0 .8047752808988764 ,

v a l i d a t i o n c o r r e c t : 0 .8491620111731844 , no improvement : 101
Cross v a l i d a t i o n f o l d #2/5
Fold #2, I t e r a t i o n #1: t r a i n i n g c o r r e c t : 0 .6171107994389902 ,

v a l i d a t i o n c o r r e c t : 0 .6123595505617978 , no improvement : 0
. . .
Fold #2, I t e r a t i o n #165: t r a i n i n g c o r r e c t : 0 .8050490883590463 ,

v a l i d a t i o n c o r r e c t : 0 .8426966292134831 , no improvement : 101
Cross v a l i d a t i o n f o l d #3/5
Fold #3, I t e r a t i o n #1: t r a i n i n g c o r r e c t : 0 .6143057503506312 ,

v a l i d a t i o n c o r r e c t : 0 .6235955056179775 , no improvement : 0
. . .
Fold #3, I t e r a t i o n #121: t r a i n i n g c o r r e c t : 0 .8176718092566619 ,
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v a l i d a t i o n c o r r e c t : 0 .797752808988764 , no improvement : 101
Cross v a l i d a t i o n f o l d #4/5
Fold #4, I t e r a t i o n #1: t r a i n i n g c o r r e c t : 0 .6129032258064516 ,

v a l i d a t i o n c o r r e c t : 0 .6292134831460674 , no improvement : 0
. . .
Fold #4, I t e r a t i o n #145: t r a i n i n g c o r r e c t : 0 .8260869565217391 ,

v a l i d a t i o n c o r r e c t : 0 .7528089887640449 , no improvement : 101
Cross v a l i d a t i o n f o l d #5/5
Fold #5, I t e r a t i o n #1: t r a i n i n g c o r r e c t : 0 .6297335203366059 ,

v a l i d a t i o n c o r r e c t : 0 .5617977528089888 , no improvement : 0
. . .
Fold #5, I t e r a t i o n #165: t r a i n i n g c o r r e c t : 0 .8218793828892006 ,

v a l i d a t i o n c o r r e c t : 0 .7752808988764045 , no improvement : 101
Cross−v a l i d a t i o n summary :
Fold #1: 0.8547486033519553
Fold #2: 0.8426966292134831
Fold #3: 0.8089887640449438
Fold #4: 0.7528089887640449
Fold #5: 0.7752808988764045
Final , c ros s−va l i da t ed s co r e :0 .8069047768501664

The listing demonstrates that training progressed through all 5 folds. Both
the training and validation scores are shown. However, our interest is solely in
the validation score. Once it failed to improve for 100 iterations, we stopped
the training. At the end of the process, we assume that our Kaggle score will
approximate the average of the scores from the 5 folds. Although we can’t
predict our exact Kaggle score, this process provides a rough estimate.

10.4 Milestone 3: Submit a Test Response

Now we can take the best model from the second milestone and submit it to
Kaggle. As a result, we process the data provided in the Kaggle test data set.
The Kaggle test data set does not include the outcomes. The best model must
generate those outcomes and generate a submission file. Listing 10.2 shows
the simple submission file.
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Listing 10.2: Kaggle Titanic Submission File
” PassengerId ” , ” Survived ”
”892” , ”0”
”893” , ”0”
”894” , ”0”
”895” , ”0”
”896” , ”0”
”897” , ”0”
”898” , ”1”
”899” , ”0”
”900” , ”1”
. . .

The above data is essentially an answer sheet for an exam because it contains
only the passenger number and our prediction. To generate the submission
file, we simply pass every item in the test set through our model. The actual
test set, provided by Kaggle, contains all the passenger attributes; however,
we need to report only the passenger identification and outcome.

Once you submit the file to Kaggle, you receive an official score that details
the number of correct responses you obtained. The RBF neural network scores
79%, as seen in Figure 10.4.

Figure 10.4: A Kaggle Submission and Score

This score is not too far from the cross-validated estimate of 80%. Further
experimentation might improve the score. For example, I did nothing with the
ticket identification. Extracting cabin location from this field and obtaining
another attribute for the model might be possible for future tests. I got 79%
with nine submissions. Ultimately, Kaggle requires a lot of trial and error;
succeeding in a Kaggle competition might involve hundreds of submissions.
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10.5 Chapter Summary

I discussed how to apply some of the techniques from earlier chapters to data
science. Prediction is one of the primary applications for data science. Fur-
thermore, artificial intelligence is a central component of this active field.

This chapter introduced the Titanic problem that serves as the tutorial
competition in Kaggle. The goal is to create a model that can predict sur-
vival rates of Titanic passengers based on attributes in a data set. Several
challenges are present in the competition. For example, most data contain un-
predictable outliers. Overfitting occurs when the model attempts to memorize
these outliers, and this negatively impacts the model’s ability to predict main-
stream data. As a result, cross-validation can prevent overfitting and allows
competitors to gain a realistic estimate of their Kaggle score.

Nature-inspired algorithms are an area of active research in the field of ar-
tificial intelligence. I introduced you to many of these algorithms. Cooperative
and competitive populations optimize solutions to a score function. Cellular
automata can produce very complex patterns with a simple set of rules. Artifi-
cial life attempts to recreate aspects of nature for entertainment or simulation
purposes. Flocks of birds and ant colonies can teach us to optimize and im-
prove processes. Particle swarm optimization can fit models, such as the RBF
neural network, to data and predict whether a passenger survived the Titanic
disaster.

If you are interested in learning more about artificial intelligence, the next
book in this series will focus on neural network models, including both tradi-
tional neural networks as well as deep belief neural networks (DBNN). Some
of the algorithms examined in this book will be applied to evolve NEAT and
HyperNEAT neural networks. Although neural networks were originally based
on the human brain, they now refer to nearly any AI model using connections.
These models will be the topic of the next book.
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Appendix A

Examples

• Downloading Examples

• Structure of Example Download

• Keeping Updated

A.1 Artificial Intelligence for Humans

These examples are part of a series of books that is currently under develop-
ment. Check the website to see which volumes have been completed and are
available.

http://www.heatonresearch.com/aifh
The following volumes are planned for this series:

• Volume 0: Introduction to the Math of AI

• Volume 1: Fundamental Algorithms

• Volume 2: Nature Inspired Algorithms

• Volume 3: Deep Belief and Neural Networks

http://www.heatonresearch.com/aifh
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A.2 Staying Up to Date

This appendix describes how to obtain the Artificial Intelligence for Humans
(AIFH) book series examples.

This area is probably the most dynamic of the book. Computer languages
are always changing and adding new versions. I will update the examples as
it becomes necessary. There are also bugs and corrections. As a result, make
sure that you are always using the latest version of the book examples.

Because this area is so dynamic, this file may become outdated. You can
always find the latest version at the following location:

https://github.com/jeffheaton/aifh

A.3 Obtaining the Examples

I provide the book’s examples in many programming languages. Core example
packs exist for Java, C#, C/C++, Python and R for most volumes. Volume 2,
as of publication, includes Java, C#, Python and Scala. Other languages may
have been added since publication. The community may have added other
languages as well. All examples can be found at the GitHub repository.

https://github.com/jeffheaton/aifh
You have your choice of two different ways to download the examples.

A.3.1 Download ZIP File

Github provides an icon that allows you to simply download a ZIP file that
contains all of the example code for the series. A single ZIP file contains all
of the examples for the series. As a result, I frequently update the contents of
this ZIP. If you are starting a new volume, it is important that you verify that
you have the latest copy. You can perform the download from the following
URL.

https://github.com/jeffheaton/aifh
You can see the download link in Figure A.1.

https://github.com/jeffheaton/aifh 
https://github.com/jeffheaton/aifh
https://github.com/jeffheaton/aifh
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Figure A.1: GitHub

A.3.2 Clone the Git Repository

You can obtain all the examples with the source control program git if it is
installed on your system. The following command clones the examples to your
computer. Cloning simply refers to the process of copying the example files.
g i t c l one https : // g i t h u b . com/ j e f f h e a t o n / a i f h . g i t

You can also pull the latest updates with the following command:
g i t p u l l

If you would like an introduction to git, refer to the following URL:
http://git-scm.com/docs/gittutorial

http://git-scm.com/docs/gittutorial
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A.4 Example Contents

The entire Artificial Intelligence for Humans series is contained in one down-
load that is a zip file.

Once you open the examples file, you will see the contents in Figure A.2.

Figure A.2: Examples Download

The license file describes the license for the book examples. All of the
examples for this series are released under the Apache v2.0 license, a free and
open-source software (FOSS) license. In other words, I do retain a copyright
to the files. However, you can freely reuse these files in both commercial and
non-commercial projects without further permission.

While the book source code is provided free, the book text is not provided
free. These books are commercial products that I sell through a variety of
channels. Consequently, you may not redistribute the actual books. This
restriction includes the PDF, MOBI, EPUB and any other format of the book.
However, I provide all books in DRM-free form. I appreciate your support of
this policy because it contributes to the future growth of these books.

The download also includes two README files. The README.md is a
“markdown” file that contains images and formatting. The README.txt is
plain text. Both files contain the same information. For more information on
MD files, refer to the following URL:

https://help.github.com/articles/github-flavored-markdown
You will find README files at several levels of the examples download.

The README file in the examples root (seen above) has information about
the book series.

https://help.github.com/articles/github-flavored-markdown
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You will also notice the individual volume folders in the download. These
are named vol1, vol2, etc. You may not see all of the volumes in the download
because I have not yet written them. All of the volumes have the same format.
For example, if you open Volume 1, you will see the contents listed in Figure
A.3. Other volumes will have a similar layout, depending on the languages
that are added.

Figure A.3: Inside Volume 1

Again, you see the two README files that contain information unique to
this particular volume. The most important information in the volume level
README files is the current status of the examples. The community often
contributes example packs. As a result, some of the example packs may not
be complete. The README for the volume will let you know this important
information. The volume README also contains the FAQ for a volume.

You should also see a file named “charts.RMD”. This file contains the R
markdown source code that created many charts in the book. The R program-
ming language produced nearly all the graphs and charts in the book. The file
ultimately allows you to see the equations behind the pictures. Nevertheless,
I do not translate this file to other programming languages. I utilize R simply
for the production of the book. If I had used another language, like Python,
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to produce some of the charts, you would see a “charts.py” along with the R
code.

Additionally, the volume has examples for C, C#, Java, Python, and R.
I also want to include complete examples for these core languages. However,
you may see that I add other languages. So, always check the README file
for the latest information on language translations.

Figure A.4 shows the contents of a typical language pack.

Figure A.4: The Java Language Pack

Pay attention to the README files. The README files in a language
folder are important because you will find information about the Java ex-
amples. If you have difficulty using the book’s examples with a particular
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language, the README file should be your first step to solving the problem.
The other files in the above image are all unique to Java. The README file
describes these files in much greater detail.

A.5 Contributing to the Project

If you would like to translate the examples to a new language or if you have
found an error in the book, you can help. Fork the project and push a commit
revision to GitHub. I will credit you among the growing number of contribu-
tors.

The process begins with a fork. You create an account on GitHub and
fork the AIFH project. This step creates a new project that has a copy of the
AIFH files. You will then clone your new project through GitHub. Once you
make your changes, you submit a “pull request.” When I receive this request,
I will evaluate your changes/additions and merge it with the main project.

You can find a more detailed article on contributing through GitHub at
this URL.

https://help.github.com/articles/fork-a-repo

https://help.github.com/articles/fork-a-repo
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