
Artificial Intelligence for
Humans, Volume 3: Deep

Learning and Neural Networks

Artificial Intelligence for
Humans, Volume 3: Deep

Learning and Neural Networks

Jeff Heaton

Heaton Research, Inc.
St. Louis, MO, USA

v

Do not make illegal copies of this
ebook

Title AIFH, Volume 3: Deep Learning and Neural Networks
Author Jeff Heaton
Published December 31, 2015
Copyright Copyright 2015 by Heaton Research, Inc., All Rights Reserved.
ISBN 978-1505714340
Price 9.99 USD
File Created Sun Nov 08 15:28:07 CST 2015

This eBook is copyrighted material, and public distribution is prohibited. If
you did not receive this ebook from Heaton Research (http://www.heatonresearch.com),
or an authorized bookseller, please contact Heaton Research, Inc. to purchase
a licensed copy. DRM free copies of our books can be purchased from:

http://www.heatonresearch.com/book
If you did purchase this book, thankyou! Your purchase of this books

supports the Encog Machine Learning Framework. http://www.encog.org/

http://www.heatonresearch.com/book
http://www.encog.org/

Publisher: Heaton Research, Inc.
Artificial Intelligence for Humans, Volume 3: Neural Networks and Deep
Learning
December, 2015
Author: Jeff Heaton
Editor: Tracy Heaton
ISBN: 978-1505714340
Edition: 1.0

Copyright ľ 2015 by Heaton Research Inc., 1734 Clarkson Rd. #107, Chester-
field, MO 63017-4976. World rights reserved. The author(s) created reusable
code in this publication expressly for reuse by readers. Heaton Research, Inc.
grants readers permission to reuse the code found in this publication or down-
loaded from our website so long as (author(s)) are attributed in any application
containing the reusable code and the source code itself is never redistributed,
posted online by electronic transmission, sold or commercially exploited as a
stand-alone product. Aside from this specific exception concerning reusable
code, no part of this publication may be stored in a retrieval system, trans-
mitted, or reproduced in any way, including, but not limited to photo copy,
photograph, magnetic, or other record, without prior agreement and written
permission of the publisher.

Heaton Research, Encog, the Encog Logo and the Heaton Research logo
are all trademarks of Heaton Research, Inc., in the United States and/or other
countries.

TRADEMARKS: Heaton Research has attempted throughout this book
to distinguish proprietary trademarks from descriptive terms by following the
capitalization style used by the manufacturer.

The author and publisher have made their best efforts to prepare this
book, so the content is based upon the final release of software whenever
possible. Portions of the manuscript may be based upon pre-release versions
supplied by software manufacturer(s). The author and the publisher make no
representation or warranties of any kind with regard to the completeness or
accuracy of the contents herein and accept no liability of any kind including
but not limited to performance, merchantability, fitness for any particular

vii

purpose, or any losses or damages of any kind caused or alleged to be caused
directly or indirectly from this book.

SOFTWARE LICENSE AGREEMENT: TERMS AND
CONDITIONS

The media and/or any online materials accompanying this book that are
available now or in the future contain programs and/or text files (the “Soft-
ware”) to be used in connection with the book. Heaton Research, Inc. hereby
grants to you a license to use and distribute software programs that make use
of the compiled binary form of this book’s source code. You may not redis-
tribute the source code contained in this book, without the written permission
of Heaton Research, Inc. Your purchase, acceptance, or use of the Software
will constitute your acceptance of such terms.

The Software compilation is the property of Heaton Research, Inc. unless
otherwise indicated and is protected by copyright to Heaton Research, Inc.
or other copyright owner(s) as indicated in the media files (the “Owner(s)”).
You are hereby granted a license to use and distribute the Software for your
personal, noncommercial use only. You may not reproduce, sell, distribute,
publish, circulate, or commercially exploit the Software, or any portion thereof,
without the written consent of Heaton Research, Inc. and the specific copyright
owner(s) of any component software included on this media.

In the event that the Software or components include specific license re-
quirements or end-user agreements, statements of condition, disclaimers, lim-
itations or warranties (“End-User License”), those End-User Licenses super-
sede the terms and conditions herein as to that particular Software component.
Your purchase, acceptance, or use of the Software will constitute your accep-
tance of such End-User Licenses.

By purchase, use or acceptance of the Software you further agree to comply
with all export laws and regulations of the United States as such laws and
regulations may exist from time to time.

SOFTWARE SUPPORT

Components of the supplemental Software and any offers associated with
them may be supported by the specific Owner(s) of that material but they are

viii

not supported by Heaton Research, Inc.. Information regarding any available
support may be obtained from the Owner(s) using the information provided
in the appropriate README files or listed elsewhere on the media.

Should the manufacturer(s) or other Owner(s) cease to offer support or
decline to honor any offer, Heaton Research, Inc. bears no responsibility. This
notice concerning support for the Software is provided for your information
only. Heaton Research, Inc. is not the agent or principal of the Owner(s), and
Heaton Research, Inc. is in no way responsible for providing any support for
the Software, nor is it liable or responsible for any support provided, or not
provided, by the Owner(s).

WARRANTY

Heaton Research, Inc. warrants the enclosed media to be free of physical
defects for a period of ninety (90) days after purchase. The Software is not
available from Heaton Research, Inc. in any other form or media than that
enclosed herein or posted to www.heatonresearch.com. If you discover a defect
in the media during this warranty period, you may obtain a replacement of
identical format at no charge by sending the defective media, postage prepaid,
with proof of purchase to:

Heaton Research, Inc.
Customer Support Department
1734 Clarkson Rd #107
Chesterfield, MO 63017-4976
Web: www.heatonresearch.com
E-Mail: support@heatonresearch.com

DISCLAIMER

Heaton Research, Inc. makes no warranty or representation, either ex-
pressed or implied, with respect to the Software or its contents, quality, per-
formance, merchantability, or fitness for a particular purpose. In no event will
Heaton Research, Inc., its distributors, or dealers be liable to you or any other
party for direct, indirect, special, incidental, consequential, or other damages

ix

arising out of the use of or inability to use the Software or its contents even
if advised of the possibility of such damage. In the event that the Software
includes an online update feature, Heaton Research, Inc. further disclaims
any obligation to provide this feature for any specific duration other than the
initial posting.

The exclusion of implied warranties is not permitted by some states. There-
fore, the above exclusion may not apply to you. This warranty provides you
with specific legal rights; there may be other rights that you may have that
vary from state to state. The pricing of the book with the Software by Heaton
Research, Inc. reflects the allocation of risk and limitations on liability con-
tained in this agreement of Terms and Conditions.

SHAREWARE DISTRIBUTION

This Software may use various programs and libraries that are distributed
as shareware. Copyright laws apply to both shareware and ordinary com-
mercial software, and the copyright Owner(s) retains all rights. If you try a
shareware program and continue using it, you are expected to register it. In-
dividual programs differ on details of trial periods, registration, and payment.
Please observe the requirements stated in appropriate files.

xi

This book is dedicated to my mom Mary,
thank you for all the love

and encouragement over the years.
.

xiii

Contents

Introduction xxiii
0.1 Series Introduction . xxiii

0.1.1 Programming Languages xxiv
0.1.2 Online Labs . xxv
0.1.3 Code Repositories . xxv
0.1.4 Books Planned for the Series xxv
0.1.5 Other Resources . xxvi

0.2 Neural Networks Introduction xxvi
0.3 The Kickstarter Campaign . xxviii
0.4 Background Information . xxxvi

0.4.1 Neural Network Structure xxxvii
0.4.2 A Simple Example . xxxix
0.4.3 Training: Supervised and Unsupervised xl
0.4.4 Miles per Gallon . xli

0.5 A Neural Network Roadmap xliii
0.6 Data Sets Used in this Book xlv

0.6.1 MNIST Handwritten Digits xlv
0.6.2 Iris Data Set . xlvi
0.6.3 Auto MPG Data Set xlviii
0.6.4 Sunspots Data Set . xlix

xiv CONTENTS

0.6.5 XOR Operator . l
0.6.6 Kaggle Otto Group Challenge l

1 Neural Network Basics 1
1.1 Neurons and Layers . 2
1.2 Types of Neurons . 7

1.2.1 Input and Output Neurons 7
1.2.2 Hidden Neurons . 8
1.2.3 Bias Neurons . 9
1.2.4 Context Neurons . 9
1.2.5 Other Neuron Types 11

1.3 Activation Functions . 11
1.3.1 Linear Activation Function 12
1.3.2 Step Activation Function 13
1.3.3 Sigmoid Activation Function 14
1.3.4 Hyperbolic Tangent Activation Function 15

1.4 Rectified Linear Units (ReLU) 16
1.4.1 Softmax Activation Function 17
1.4.2 What Role does Bias Play? 20

1.5 Logic with Neural Networks 22
1.6 Chapter Summary . 25

2 Self-Organizing Maps 29
2.1 Self-Organizing Maps . 30

2.1.1 Understanding Neighborhood Functions 34
2.1.2 Mexican Hat Neighborhood Function 38
2.1.3 Calculating SOM Error 40

2.2 Chapter Summary . 41

3 Hopfield & Boltzmann Machines 43

CONTENTS xv

3.1 Hopfield Neural Networks . 44
3.1.1 Training a Hopfield Network 46

3.2 Hopfield-Tank Networks . 50
3.3 Boltzmann Machines . 51

3.3.1 Boltzmann Machine Probability 53
3.4 Applying the Boltzmann Machine 54

3.4.1 Traveling Salesman Problem 54
3.4.2 Optimization Problems 58
3.4.3 Boltzmann Machine Training 62

3.5 Chapter Summary . 62

4 Feedforward Neural Networks 65
4.1 Feedforward Neural Network Structure 66

4.1.1 Single-Output Neural Networks for Regression 66
4.2 Calculating the Output . 69
4.3 Initializing Weights . 73
4.4 Radial-Basis Function Networks 76

4.4.1 Radial-Basis Functions 77
4.4.2 Radial-Basis Function Networks 80

4.5 Normalizing Data . 82
4.5.1 One-of-N Encoding . 82
4.5.2 Range Normalization 84
4.5.3 Z-Score Normalization 85
4.5.4 Complex Normalization 88

4.6 Chapter Summary . 89

5 Training & Evaluation 93
5.1 Evaluating Classification . 94

5.1.1 Binary Classification 95

xvi CONTENTS

5.1.2 Multi-Class Classification 102
5.1.3 Log Loss . 103
5.1.4 Multi-Class Log Loss 105

5.2 Evaluating Regression . 106
5.3 Training with Simulated Annealing 107
5.4 Chapter Summary . 110

6 Backpropagation Training 113
6.1 Understanding Gradients . 114

6.1.1 What is a Gradient . 115
6.1.2 Calculating Gradients 116

6.2 Calculating Output Node Deltas 118
6.2.1 Quadratic Error function 119
6.2.2 Cross Entropy Error Function 120

6.3 Calculating Remaining Node Deltas 120
6.4 Derivatives of the Activation Functions 121

6.4.1 Derivative of the Linear Activation Function 121
6.4.2 Derivative of the Softmax Activation Function 121
6.4.3 Derivative of the Sigmoid Activation Function 122
6.4.4 Derivative of the Hyperbolic Tangent Activation Function123
6.4.5 Derivative of the ReLU Activation Function 123

6.5 Applying Backpropagation . 125
6.5.1 Batch and Online Training 125
6.5.2 Stochastic Gradient Descent 126
6.5.3 Backpropagation Weight Update 127
6.5.4 Choosing Learning Rate and Momentum 128
6.5.5 Nesterov Momentum 129

6.6 Chapter Summary . 130

CONTENTS xvii

7 Other Propagation Training 133
7.1 Resilient Propagation . 134
7.2 RPROP Arguments . 134
7.3 Data Structures . 136
7.4 Understanding RPROP . 137

7.4.1 Determine Sign Change of Gradient 137
7.4.2 Calculate Weight Change 139
7.4.3 Modify Update Values 140

7.5 Levenberg-Marquardt Algorithm 140
7.6 Calculation of the Hessian . 143
7.7 LMA with Multiple Outputs 145
7.8 Overview of the LMA Process 146
7.9 Chapter Summary . 146

8 NEAT, CPPN & HyperNEAT 149
8.1 NEAT Networks . 150

8.1.1 NEAT Mutation . 153
8.1.2 NEAT Crossover . 154
8.1.3 NEAT Speciation . 158

8.2 CPPN Networks . 159
8.2.1 CPPN Phenotype . 161

8.3 HyperNEAT Networks . 165
8.3.1 HyperNEAT Substrate 165
8.3.2 HyperNEAT Computer Vision 166

8.4 Chapter Summary . 168

9 Deep Learning 171
9.1 Deep Learning Components 172
9.2 Partially Labeled Data . 172

xviii CONTENTS

9.3 Rectified Linear Units . 173
9.4 Convolutional Neural Networks 174
9.5 Neuron Dropout . 175
9.6 GPU Training . 176
9.7 Tools for Deep Learning . 178

9.7.1 H2O . 179
9.7.2 Theano . 179
9.7.3 Lasagne and NoLearn 179
9.7.4 ConvNetJS . 181

9.8 Deep Belief Neural Networks 181
9.8.1 Restricted Boltzmann Machines 185
9.8.2 Training a DBNN . 186
9.8.3 Layer-Wise Sampling 187
9.8.4 Computing Positive Gradients 188
9.8.5 Gibbs Sampling . 190
9.8.6 Update Weights & Biases 191
9.8.7 DBNN Backpropagation 192
9.8.8 Deep Belief Application 193

9.9 Chapter Summary . 195

10 Convolutional Neural Networks 197
10.1 LeNET-5 . 198
10.2 Convolutional Layers . 200
10.3 Max-Pool Layers . 203
10.4 Dense Layers . 204
10.5 ConvNets for the MNIST Data Set 205
10.6 Chapter Summary . 207

11 Pruning and Model Selection 209

CONTENTS xix

11.1 Understanding Pruning . 210
11.1.1 Pruning Connections 210
11.1.2 Pruning Neurons . 211
11.1.3 Improving or Degrading Performance 211

11.2 Pruning Algorithm . 212
11.3 Model Selection . 213

11.3.1 Grid Search Model Selection 214
11.3.2 Random Search Model Selection 217
11.3.3 Other Model Selection Techniques 218

11.4 Chapter Summary . 219

12 Dropout and Regularization 223
12.1 L1 and L2 Regularization . 224

12.1.1 Understanding L1 Regularization 225
12.1.2 Understanding L2 Regularization 227

12.2 Dropout Layers . 228
12.2.1 Dropout Layer . 228
12.2.2 Implementing a Dropout Layer 229

12.3 Using Dropout . 232
12.4 Chapter Summary . 234

13 Time Series and Recurrent Networks 237
13.1 Time Series Encoding . 238

13.1.1 Encoding Data for Input and Output Neurons 239
13.1.2 Predicting the Sine Wave 241

13.2 Simple Recurrent Neural Networks 243
13.2.1 Elman Neural Networks 245
13.2.2 Jordan Neural Networks 246
13.2.3 Backpropagation through Time 248

xx CONTENTS

13.2.4 Gated Recurrent Units 252
13.3 Chapter Summary . 253

14 Architecting Neural Networks 257
14.1 Evaluating Neural Networks 258
14.2 Training Parameters . 259

14.2.1 Learning Rate . 259
14.2.2 Momentum . 261
14.2.3 Batch Size . 263

14.3 General Hyper-Parameters . 264
14.3.1 Activation Functions 264
14.3.2 Hidden Neuron Configurations 266

14.4 LeNet-5 Hyper-Parameters . 267
14.5 Chapter Summary . 268

15 Visualization 271
15.1 Confusion Matrix . 272

15.1.1 Reading a Confusion Matrix 272
15.1.2 Generating a Confusion Matrix 273

15.2 t-SNE Dimension Reduction 274
15.2.1 t-SNE as a Visualization 276
15.2.2 t-SNE Beyond Visualization 280

15.3 Chapter Summary . 281

16 Modeling with Neural Networks 285
16.0.1 Lessons from the Challenge 289
16.0.2 The Winning Approach to the Challenge 291
16.0.3 Our Approach to the Challenge 293

16.1 Modeling with Deep Learning 294
16.1.1 Neural Network Structure 294

CONTENTS xxi

16.1.2 Bagging Multiple Neural Networks 297
16.2 Chapter Summary . 299

A Examples 301
A.1 Artificial Intelligence for Humans 301
A.2 Latest Versions . 302
A.3 Obtaining the Examples . 302

A.3.1 Download ZIP File . 302
A.3.2 Clone the Git Repository 303

A.4 Example Contents . 303
A.5 Contributing to the Project 307

References 309

xxiii

Introduction

• Series Introduction

• Example Computer Languages

• Prerequisite Knowledge

• Fundamental Algorithms

• Other Resources

• Structure of this Book

This book is the third in a series covering select topics in artificial intelligence
(AI), a large field of study that encompasses many sub-disciplines. In this
introduction, we will provide some background information for readers who
might not have read Volume 1 or 2. It is not necessary to read Volume 1 or 2
before this book. We introduce needed information from both volumes in the
following sections.

0.1 Series Introduction

This series of books introduces the reader to a variety of popular topics in arti-
ficial intelligence. By no means are these volumes intended to be an exhaustive
AI resource. However, each book presents a specific area of AI to familiarize
the reader with some of the latest techniques in this field of computer science.

xxiv Introduction

In this series, we teach artificial intelligence concepts in a mathematically
gentle manner, which is why we named the series Artificial Intelligence for Hu-
mans. As a result, we always follow the theories with real-world programming
examples and pseudocode instead of relying solely on mathematical formulas.
Still, we make these assumptions:

• The reader is proficient in at least one programming language.

• The reader has a basic understanding of college algebra.

• The reader does not necessarily have much experience with formulas
from calculus, linear algebra, differential equations, and statistics. We
will introduce these formulas when necessary.

Finally, the book’s examples have been ported to a number of programming
languages. Readers can adapt the examples to the language that fits their
particular programming needs.

0.1.1 Programming Languages

Although the book’s text stays at the pseudocode level, we provide exam-
ple packs for Java, C# and Python. The Scala programming language has
a community-supplied port, and readers are also working on porting the ex-
amples to additional languages. So, your favorite language might have been
ported since this printing. Check the book’s GitHub repository for more in-
formation. We highly encourage readers of the books to help port to other
languages. If you would like to get involved, Appendix A has more informa-
tion to get you started.

0.1 Series Introduction xxv

0.1.2 Online Labs

Many of the examples from this series use JavaScript and are available to run
online, using HTML5. Mobile devices must also have HTML5 capability to
run the programs. You can find all online lab materials at the following web
site:

http://www.aifh.org
These online labs allow you to experiment with the examples even as you

read the e-book from a mobile device.

0.1.3 Code Repositories

All of the code for this project is released under the Apache Open Source
License v2 and can be found at the following GitHub repository:

https://github.com/jeffheaton/aifh
If you find something broken, misspelled, or otherwise botched as you work

with the examples, you can fork the project and push a commit revision to
GitHub. You will also receive credit among the growing number of contribu-
tors. Refer to Appendix A for more information on contributing code.

0.1.4 Books Planned for the Series

The following volumes are planned for this series:

• Volume 0: Introduction to the Math of AI

• Volume 1: Fundamental Algorithms

• Volume 2: Nature-Inspired Algorithms

• Volume 3: Deep Learning and Neural Networks

We will produce Volumes 1, 2, and 3 in order. Volume 0 is a planned prequel
that we will create near the end of the series. While all the books will include
the required mathematical formulas to implement the programs, the prequel

http://www.aifh.org
https://github.com/jeffheaton/aifh

xxvi Introduction

will recap and expand on all the concepts from the earlier volumes. We also
intend to produce more books on AI after the publication of Volume 3.

In general, you can read the books in any order. Each book’s introduction
will provide some background material from previous volumes. This organi-
zation allows you to jump quickly to the volume that contains your area of
interest. If you want to supplement your knowledge at a later point, you can
read the previous volume.

0.1.5 Other Resources

Many other resources on the Internet will be very useful as you read through
this series of books.

The first resource is Khan Academy, a nonprofit, educational website that
provides videos to demonstrate many areas of mathematics. If you need ad-
ditional review on any mathematical concept in this book, Khan Academy
probably has a video on that information.

http://www.khanacademy.org/
The second resource is the Neural Network FAQ. This text-only resource

has a great deal of information on neural networks and other AI topics.
http://www.faqs.org/faqs/ai-faq/neural-nets/
Although the information in this book is not necessarily tied to Encog,

the Encog home page has a fair amount of general information on machine
learning.

http://www.encog.org

0.2 Neural Networks Introduction

Neural networks have been around since the 1940s, and, as a result, they have
quite a bit of history. This book will cover the historic aspects of neural net-
works because you need to know some of the terminology. A good example
of this historic progress is the activation function, which scales values passing
through neurons in the neural network. Along with threshold activation func-
tions, researchers introduced neural networks, and this advancement gave way

http://www.khanacademy.org/
http://www.faqs.org/faqs/ai-faq/neural-nets/
http://www.encog.org

0.2 Neural Networks Introduction xxvii

to sigmoidal activation functions, then to hyperbolic tangent functions and
now to the rectified linear unit (ReLU). While most current literature sug-
gests using the ReLU activation function exclusively, you need to understand
sigmoidal and hyperbolic tangent to see the benefits of ReLU.

Whenever possible, we will indicate which architectural component of a
neural network to use. We will always identify the architectural components
now accepted as the recommended choice over older classical components.
We will bring many of these architectural elements together and provide you
with some concrete recommendations for structuring your neural networks in
Chapter 14, “Architecting Neural Networks.”

Neural networks have risen from the ashes of discredit several times in
their history. McCulloch, W. and Pitts, W. (1943) first introduced the idea
of a neural network. However, they had no method to train these neural
networks. Programmers had to craft by hand the weight matrices of these
early networks. Because this process was tedious, neural networks fell into
disuse for the first time.

Rosenblatt, F. (1958) provided a much-needed training algorithm called
backpropagation, which automatically creates the weight matrices of neural
networks. It fact, backpropagation has many layers of neurons that simulate
the architecture of animal brains. However, backpropagation is slow, and, as
the layers increase, it becomes even slower. It appeared as if the addition
of computational power in the 1980s and early 1990s helped neural networks
perform tasks, but the hardware and training algorithms of this era could not
effectively train neural networks with many layers, and, for the second time,
neural networks fell into disuse.

The third rise of neural networks occurred when Hinton (2006) provided a
radical new way to train deep neural networks. The recent advances in high-
speed graphics processing units (GPU) allowed programmers to train neural
networks with three or more layers and led to a resurgence in this technology
as programmers realized the benefits of deep neural networks.

In order to establish the foundation for the rest of the book, we begin with
an analysis of classic neural networks, which are still useful for a variety of
tasks. Our analysis includes concepts, such as self-organizing maps (SOMs),
Hopfield neural networks, and Boltzmann machines. We also introduce the
feedforward neural network and show several ways to train it.

xxviii Introduction

A feedforward neural network with many layers becomes a deep neural
network. The book contains methods, such as GPU support, to train deep
networks. We also explore technologies related to deep learning, such as
dropout, regularization, and convolution. Finally, we demonstrate these tech-
niques through several real-world examples of deep learning, such as predictive
modeling and image recognition.

If you would like to read in greater detail about the three phases of neural
network technology, the following article presents a great overview:

http://chronicle.com/article/The-Believers/190147/

0.3 The Kickstarter Campaign

In 2013, we launched this series of books after a successful Kickstarter cam-
paign. Figure 1 shows the home page of the Kickstarter project for Volume
3:

Figure 1: The Kickstarter Campaign

You can visit the original Kickstarter at the following link:
https://goo.gl/zW4dht
We would like to thank all of the Kickstarter backers of the project. With-

out your support, this series might not exist. We would like to extend a huge
thank you to those who backed at the $250 and beyond level:

http://chronicle.com/article/The-Believers/190147/
https://goo.gl/zW4dht

0.3 The Kickstarter Campaign xxix

Figure 2: Gold Level Backers

It will be great discussing your projects with you. Thank you again for
your support.

We would also like to extend a special thanks to those backers who sup-
ported the book at the $100 and higher levels. They are listed here in the
order that they backed:

xxx Introduction

Figure 3: Silver Level Backers

0.3 The Kickstarter Campaign xxxi

A special thank you to my wife, Tracy Heaton, who edited the previous
two volumes.

There have been three volumes so far; the repeat backers have been very
valuable to this campaign! It is amazing to me how many repeat backers there
are!

Thank you, everyone–you are the best!
http://www.heatonresearch.com/ThankYou/

http://www.heatonresearch.com/ThankYou/

xxxii Introduction

Figure 4: Repeat Backers 1/4

0.3 The Kickstarter Campaign xxxiii

Figure 5: Repeat Backers 2/4

xxxiv Introduction

Figure 6: Repeat Backers 3/4

0.3 The Kickstarter Campaign xxxv

Figure 7: Repeat Backers 4/4

xxxvi Introduction

0.4 Background Information

You can read Artificial Intelligence for Humans in any order. However, this
book does expand on some topics introduced in Volumes 1 and 2. The goal
of this section is to help you understand what a neural network is and how to
use it. Most people, even non-programmers, have heard of neural networks.
Many science fiction stories have plots that are based on ideas related to neural
networks. As a result, sci-fi writers have created an influential but somewhat
inaccurate view of the neural network.

Most laypeople consider neural networks to be a type of artificial brain.
According to this view, neural networks could power robots or carry on in-
telligent conversations with human beings. However, this notion is a closer
definition of artificial intelligence (AI) than of neural networks. Although AI
seeks to create truly intelligent machines, the current state of computers is far
below this goal. Human intelligence still trumps computer intelligence.

Neural networks are a small part of AI. As they currently exist, neural
networks carry out miniscule, highly specific tasks. Unlike the human brain,
computer-based neural networks are not general-purpose computational de-
vices. Furthermore, the term neural network can create confusion because the
brain is a network of neurons just as AI uses neural networks. To avoid this
problem, we must make an important distinction.

We should really call the human brain a biological neural network (BNN).
Most texts do not bother to make the distinction between a BNN and artificial
neural networks (ANNs). Our book follows this pattern. When we refer to
neural networks, we’re dealing with ANNs. We are not talking about BNNs
when we use the term neural network.

Biological neural networks and artificial neural networks share some very
basic similarities. For instance, biological neural networks have inspired the
mathematical constructs of artificial neural networks. Biological plausibility
describes various artificial neural network algorithms. This term defines how
close an artificial neural network algorithm is to a biological neural network.

As previously mentioned, programmers design neural networks to execute
one small task. A full application will likely use neural networks to accomplish

0.4 Background Information xxxvii

certain parts of the application. However, the entire application will not be
implemented as a neural network. It may consist of several neural networks of
which each has a specific task.

Pattern recognition is a task that neural networks can easily accomplish.
For this task, you can communicate a pattern to a neural network, and it
communicates a pattern back to you. At the highest level, a typical neural
network can perform only this function. Although some network architectures
might achieve more, the vast majority of neural networks work this way. Figure
8 illustrates a neural network at this level:

Figure 8: A Typical Neural Network

As you can see, the above neural network accepts a pattern and returns
a pattern. Neural networks operate synchronously and will only output when
it has input. This behavior is not like that of a human brain, which does
not operate synchronously. The human brain responds to input, but it will
produce output anytime it feels like it!

0.4.1 Neural Network Structure

Neural networks consist of layers of similar neurons. Most have at least an
input layer and an output layer. The program presents the input pattern to the
input layer. Then the output pattern is returned from the output layer. What
happens between the input and an output layer is a black box. By black box,
we mean that you do not know exactly why a neural network outputs what it
does. At this point, we are not yet concerned with the internal structure of
the neural network, or the black box. Many different architectures define the
interaction between the input and output layer. Later, we will examine some
of these architectures.

xxxviii Introduction

The input and output patterns are both arrays of floating-point numbers.
Consider the arrays in the following ways:
Neural Network Input : [−0.245 , . 283 , 0 . 0]
Neural Network Output : [0 . 782 , 0 .543]

The above neural network has three neurons in the input layer, and two neu-
rons are in the output layer. The number of neurons in the input and output
layers does not change, even if you restructure the interior of the neural net-
work.

To utilize the neural network, you must express your problem so that the
input of the problem is an array of floating-point numbers. Likewise, the so-
lution to the problem must be an array of floating-point numbers. Ultimately,
this expression is the only process that that neural networks can perform.
In other words, they take one array and transform it into a second. Neu-
ral networks do not loop, call subroutines, or perform any of the other tasks
you might think of with traditional programming. Neural networks simply
recognize patterns.

You might think of a neural network as a hash table in traditional pro-
gramming that maps keys to values. It acts somewhat like a dictionary. You
can consider the following as a type of hash table:

• “hear” -> “to perceive or apprehend by the ear”

• “run” -> “to go faster than a walk”

• “write” -> “to form (as characters or symbols) on a surface with an
instrument (as a pen)”

This table creates a mapping between words and provides their definitions.
Programming languages usually call this a hash map or a dictionary. This
hash table uses a key of type string to reference another value that is also of
the same type string. If you’ve not worked with hash tables before, they simply
map one value to another, and they are a form of indexing. In other words,
the dictionary returns a value when you provide it with a key. Most neural
networks function in this manner. One neural network called bidirectional
associative memory (BAM) allows you to provide the value and receive the
key.

0.4 Background Information xxxix

Programming hash tables contain keys and values. Think of the pattern
sent to the input layer of the neural network as the key to the hash table.
Likewise, think of the value returned from the hash table as the pattern that
is returned from the output layer of the neural network. Although the com-
parison between a hash table and a neural network is appropriate to help you
understand the concept, you need to realize that the neural network is much
more than a hash table.

What would happen with the previous hash table if you were to provide a
word that is not a key in the map? To answer the question, we will pass in the
key of “wrote.” For this example, a hash table would return null. It would
indicate in some way that it could not find the specified key. However, neural
networks do not return null; they find the closest match. Not only do they
find the closest match, they will modify the output to estimate the missing
value. So if you passed in “wrote” to the above neural network, you would
likely receive what you would have expected for “write.” You would likely get
the output from one of the other keys because not enough data exist for the
neural network to modify the response. The limited number of samples (in
this case, there are three) causes this result.

The above mapping raises an important point about neural networks. As
previously stated, neural networks accept an array of floating-point numbers
and return another array. This behavior provokes the question about how
to put string, or textual, values into the above neural network. Although a
solution exists, dealing with numeric data rather than strings is much easier
for the neural network.

In fact, this question reveals one of the most difficult aspects of neural
network programming. How do you translate your problem into a fixed-length
array of floating-point numbers? In the examples that follow, you will see the
complexity of neural networks.

0.4.2 A Simple Example

In computer programming, it is customary to provide a “Hello World” appli-
cation that simply displays the text “Hello World.” If you have previously read
about neural networks, you have no doubt seen examples with the exclusive
or (XOR) operator, which is one of the “Hello World” applications of neural

xl Introduction

network programming. Later in this section, we will describe more complex
scenarios than XOR, but it is a great introduction. We shall begin by looking
at the XOR operator as though it were a hash table. If you are not familiar
with the XOR operator, it works similarly to the AND / OR operators. For
an AND to be true, both sides must be true. For an OR to be true, either
side must be true. For an XOR to be true, both of the sides must be different
from each other. The following truth table represents an XOR:
False XOR False = False
True XOR False = True
Fal se XOR True = True
True XOR True = False

To continue the hash table example, you would represent the above truth table
as follows:
[0 . 0 , 0 . 0] −> [0 . 0]
[1 . 0 , 0 . 0] −> [1 . 0]
[0 . 0 , 1 . 0] −> [1 . 0]
[1 . 0 , 1 . 0] −> [0 . 0]

These mappings show input and the ideal expected output for the neural
network.

0.4.3 Training: Supervised and Unsupervised

When you specify the ideal output, you are using supervised training. If
you did not provide ideal outputs, you would be using unsupervised training.
Supervised training teaches the neural network to produce the ideal output.
Unsupervised training usually teaches the neural network to place the input
data into a number of groups defined by the output neuron count.

Both supervised and unsupervised training are iterative processes. For
supervised training, each training iteration calculates how close the actual
output is to the ideal output and expresses this closeness as an error percent.
Each iteration modifies the internal weight matrices of the neural network to
decrease the error rate to an acceptably low level.

Unsupervised training is also an iterative process. However, calculating
the error is not as easy. Because you have no expected output, you cannot

0.4 Background Information xli

measure how far the unsupervised neural network is from your ideal output.
Thus, you have no ideal output. As a result, you will just iterate for a fixed
number of iterations and try to use the network. If the neural network needs
more training, the program provides it.

Another important aspect to the above training data is that you can take
it in any order. The result of two zeros, with XOR applied (0 XOR 0) is going
to be 0, regardless of which case that you used. This characteristic is not true
of all neural networks. For the XOR operator, we would probably use a type
of neural network called a feedforward neural network in which the order of
the training set does not matter. Later in this book, we will examine recurrent
neural networks that do consider the order of the training data. Order is an
essential component of a simple recurrent neural network.

Previously, you saw that the simple XOR operator utilized training data.
Now we will analyze a situation with more complex training data.

0.4.4 Miles per Gallon

In general, neural network problems involve a set of data that you use to
predict values for later sets of data. These later sets of data result after you’ve
already trained your neural network. The power of a neural network is to
predict outcomes for entirely new data sets based on knowledge learned from
past data sets. Consider a car database that contains the following fields:

• Car Weight

• Engine Displacement

• Cylinder Count

• Horse Power

• Hybrid or Gasoline

• Miles per Gallon

Although we are oversimplifying the data, this example demonstrates how to
format data. Assuming you have collected some data for these fields, you

xlii Introduction

should be able to construct a neural network that can predict one field value,
based on the other field values. For this example, we will try to predict miles
per gallon.

As previously demonstrated, we will need to define this problem in terms of
an input array of floating-point numbers mapped to an output array of floating-
point numbers. However, the problem has one additional requirement. The
numeric range on each of these array elements should be between 0 and 1 or -1
and 1. This range is called normalization. It takes real-world data and turns
it into a form that the neural network can process.

First, we determine how to normalize the above data. Consider the neural
network format. We have six total fields. We want to use five of these fields
to predict the sixth. Consequently, the neural network would have five input
neurons and one output neuron.

Your network would resemble the following:

• Input Neuron 1: Car Weight

• Input Neuron 2: Engine Displacement

• Input Neuron 3: Cylinder Count

• Input Neuron 4: Horse Power

• Input Neuron 5: Hybrid or Gasoline

• Output Neuron 1: Miles per Gallon

We also need to normalize the data. To accomplish this normalization, we must
think of reasonable ranges for each of these values. We will then transform
input data into a number between 0 and 1 that represents an actual value’s
position within that range. Consider this example with the reasonable ranges
for the following values:

• Car Weight: 100-5000 lbs.

• Engine Displacement: 0.1 to 10 liters

• Cylinder Count: 2-12

0.5 A Neural Network Roadmap xliii

• Horse Power: 1-1000

• Hybrid or Gasoline: true or false

• Miles per Gallon: 1-500

Given today’s cars, these ranges may be on the large end. However, this
characteristic will allow minimal restructuring to the neural network in the
future. We also want to avoid having too much data at the extreme ends of
the range.

To illustrate this range, we will consider the problem of normalizing a
weight of 2,000 pounds. This weight is 1,900 into the range (2000 - 100). The
size of the range is 4,900 pounds (5000-100). The percent of the range size
is 0.38 (1,900 / 4,900). Therefore, we would feed the value of 0.38 to the
input neuron in order to represent this value. This process satisfies the range
requirement of 0 to 1 for an input neuron.

The hybrid or regular value is a true/false. To represent this value, we will
use 1 for hybrid and 0 for regular. We simply normalize a true/false into two
values.

Now that you’ve seen some of the uses for neural networks, it is time
to determine how to select the appropriate neural network for your specific
problem. In the succeeding section, we provide a roadmap for the various
neural networks that are available.

0.5 A Neural Network Roadmap

This volume contains a wide array of neural network types. We will present
these neural networks along with examples that will showcase each neural
network in a specific problem domain. Not all neural networks are designed
to tackle every problem domain. As a neural network programmer, you need
to know which neural network to use for a specific problem.

This section provides a high-level roadmap to the rest of the book that will
guide your reading to areas of the book that align with your interests. Figure
9 shows a grid of the neural network types in this volume and their applicable
problem domains:

xliv Introduction

Figure 9: Neural Network Types & Problem Domains

The problem domains listed above are the following:

• Clust - Unsupervised clustering problems

• Regis - Regression problems, the network must output a number based
on input.

• Classif - Classification problems, the network must classify data points
into predefined classes.

• Predict - The network must predict events in time, such as signals for
finance applications.

• Robot - Robotics, using sensors and motor control

• Vision - Computer Vision (CV) problems require the computer to un-
derstand images.

• Optim - Optimization problems require that the network find the best
ordering or set of values to achieve an objective.

The number of checkmarks gives the applicability of each of the neural network
types to that particular problem. If there are no checks, you cannot apply that
network type to that problem domain.

All neural networks share some common characteristics. Neurons, weights,
activation functions, and layers are the building blocks of neural networks. In

0.6 Data Sets Used in this Book xlv

the first chapter of this book, we will introduce these concepts and present the
basic characteristics that most neural networks share.

0.6 Data Sets Used in this Book

This book contains several data sets that allow us to show application of the
neural networks to real data. We chose several data sets in order to cover
topics such as regression, classification, time-series, and computer vision.

0.6.1 MNIST Handwritten Digits

Several examples use the MNIST handwritten digits data set. The MNIST
database (Mixed National Institute of Standards and Technology database)
is a large database of handwritten digits that programmers use for training
various image processing systems. This classic data set is often presented
in conjunction with neural networks. This data set is essentially the “Hello
World” program of neural networks. You can obtain it from the following
URL:

http://yann.lecun.com/exdb/mnist/
The data set in the above listing is stored in a special binary format. You

can also find this format at the above URL. The example programs provided
for this chapter are capable of reading this format.

This data set contains many handwritten digits. It also includes a training
set of 60,000 examples and a test set of 10,000 examples. We provide labels
on both sets to indicate what each digit is supposed to be. MNIST is a highly
studied data set that programmers frequently use as a benchmark for new
machine learning algorithms and techniques. Furthermore, researchers have
published many scientific papers about their attempts to achieve the lowest
error rate. In one study, the researcher managed to achieve an error rate
on the MNIST database of 0.23 percent while using a hierarchical system of
convolutional neural networks (Schmidhuber, 2012).

http://yann.lecun.com/exdb/mnist/

xlvi Introduction

We show a small sampling of the data set in Figure 10:

Figure 10: MNIST Digits

We can use this data set for classification neural networks. The networks
learn to look at an image and classify it into the appropriate place among
the ten digits. Even though this data set is an image-based neural network,
you can think of it as a traditional data set. These images are 28 pixels by
28 pixels, resulting in a total of 784 pixels. Despite the impressive images,
we begin the book by using regular neural networks that treat the images as
a 784-input-neuron neural network. You would use exactly the same type of
neural network to handle any classification problem that has a large number of
inputs. Such problems are high dimensional. Later in the book, we will see how
to use neural networks that were specifically designed for image recognition.
These neural networks will perform considerably better on the MNIST digits
than the more traditional neural networks.

The MNIST data set is stored in a propriety binary format that is described
at the above URL. We provide a decoder in the book’s examples.

0.6.2 Iris Data Set

Because AI frequently uses the iris data set (Fisher, 1936), you will see it
several times in this book. Sir Ronald Fisher (1936) collected these data as an
example of discriminant analysis. This data set has become very popular in
machine learning even today. The following URL contains the iris data set:

https://archive.ics.uci.edu/ml/datasets/Iris
The iris data set contains measurements and species information for 150

iris flowers, and the data are essentially represented as a spreadsheet with the

https://archive.ics.uci.edu/ml/datasets/Iris

0.6 Data Sets Used in this Book xlvii

following columns or features:

• Sepal length

• Sepal width

• Petal length

• Petal width

• Iris species

Petals refer to the innermost petals of the iris, and sepal refers to the outermost
petals of the iris flower. Even though the data set seems to have a vector of
length 5, the species feature must be handled differently than the other four. In
other words, vectors typically contain only numbers. So, the first four features
are inherently numerical. The species feature is not.

One of the primary applications of this data set is to create a program that
will act as a classifier. That is, it will consider the flower’s features as inputs
(sepal length, petal width, etc.) and ultimately determine the species. This
classification would be trivial for a complete and known data set, but our goal
is to see whether the model can correctly identify the species using data from
unknown irises.

Only simple numeric encoding translates the iris species to a single di-
mension. We must use additional dimensional encodings, such as one-of-n or
equilateral, so that the species encodings are equidistant from each other. If
we are classifying irises, we do not want our encoding process to create any
biases.

xlviii Introduction

Thinking of the iris features as dimensions in a higher-dimensional space
makes a great deal of sense. Consider the individual samples (the rows in the
iris data set) as points in this search space. Points closer together likely share
similarities. Let’s take a look at these similarities by studying the following
three rows from the iris data set:
5 . 1 , 3 . 5 , 1 . 4 , 0 . 2 , I r i s −s e t o s a
7 . 0 , 3 . 2 , 4 . 7 , 1 . 4 , I r i s −v e r s i c o l o u r
6 . 3 , 3 . 3 , 6 . 0 , 2 . 5 , I r i s −v i r g i n i c a

The first line has 5.1 as the sepal length, 3.5 as the sepal width, 1.4 as the
petal length, and 0.2 as the petal width. If we use one-of-n encoding to the
range 0 to 1, the above three rows would encode to the following three vectors:

[5 . 1 , 3 . 5 , 1 . 4 , 0 . 2 , 1 , 0 , 0]
[7 . 0 , 3 . 2 , 4 . 7 , 1 . 4 , 0 , 1 , 0]
[6 . 3 , 3 . 3 , 6 . 0 , 2 . 5 , 0 , 0 , 1]

Chapter 4, “Feedforward Neural Networks,” will cover one-of-n encoding.

0.6.3 Auto MPG Data Set

The auto miles per gallon (MPG) data set is commonly used for regression
problems. The data set contains attributes of several cars. Using these at-
tributes, we can train neural networks to predict the fuel efficiency of the car.
The UCI Machine Learning Repository provides this data set, and you can
download it from the following URL:

https://archive.ics.uci.edu/ml/datasets/Auto+MPG
We took these data from the StatLib library, which is maintained at Carnegie

Mellon University. In the exposition for the American Statistical Association,
programmers used the data in 1983, and no values are missing. Quinlan (1993),
the author of the study, used this data set to describe fuel consumption. “The
data concern city-cycle fuel consumption in miles per gallon, to be projected in
terms of three multi-valued discrete and five continuous attributes” (Quinlan,
1993).

The data set contains the following attributes:

https://archive.ics.uci.edu/ml/datasets/Auto+MPG

0.6 Data Sets Used in this Book xlix

1 . mpg : cont inuous
2 . c y l i n d e r s : multi−valued d i s c r e t e
3 . d i sp lacement : cont inuous
4 . horsepower : cont inuous
5 . weight : cont inuous
6 . a c c e l e r a t i o n : cont inuous
7 . model year : multi−valued d i s c r e t e
8 . o r i g i n : multi−valued d i s c r e t e
9 . car name : s t r i n g (unique for each in s t ance)

0.6.4 Sunspots Data Set

Sunspots are temporary phenomena on the surface of the sun that appear vis-
ibly as dark spots compared to surrounding regions. Intense magnetic activity
causes sunspots. Although they occur at temperatures of roughly 3,000-4,500
K (2,727-4,227 °C), the contrast with the surrounding material at about 5,780
K leaves them clearly visible as dark spots. Sunspots appear and disappear
with regularity, making them a good data set for time series prediction.

Figure 11 shows sunspot activity over time:

Figure 11: Sunspots Activity

l Introduction

The sunspot data file contains information similar to the following:
YEAR MON SSN DEV
1749 1 58 .0 24 .1
1749 2 62 .6 25 .1
1749 3 70 .0 26 .6
1749 4 55 .7 23 .6
1749 5 85 .0 29 .4
1749 6 83 .5 29 .2
1749 7 94 .8 31 .1
1749 8 66 .3 25 .9
1749 9 75 .9 27 .7

The above data provide the year, month, sunspot count, and standard devi-
ation of sunspots observed. Many world organizations track sunspots. The
following URL contains a table of sunspot readings:

http://solarscience.msfc.nasa.gov/greenwch/spot_num.txt

0.6.5 XOR Operator

The exclusive or (XOR) operator is a Boolean operator. Programmers fre-
quently use the truth table for the XOR as an ultra-simple sort of ”Hello
World” training set for machine learning. We refer to the table as the XOR
data set. This operator is related to the XOR parity operator, which accepts
three inputs and has the following truth table:
0 XOR 0 = 0
1 XOR 0 = 1
0 XOR 1 = 1
1 XOR 1 = 0

We utilize the XOR operator for cases in which we would like to train or
evaluate the neural network by hand.

0.6.6 Kaggle Otto Group Challenge

In this book, we will also utilize the Kaggle Otto Group Challenge data set.
Kaggle is a platform that fosters competition among data scientists on new
data sets. We use this data set to classify products into several groups based

http://solarscience.msfc.nasa.gov/greenwch/spot_num.txt

0.6 Data Sets Used in this Book li

on unknown attributes. Additionally, we will employ a deep neural network
to tackle this problem. We will also discuss advanced ensemble techniques in
this chapter that you can use to compete in Kaggle. We will describe this data
set in greater detail in Chapter 16.

We will begin this book with an overview of features that are common
to most neural networks. These features include neurons, layers, activation
functions, and connections. For the remainder of the book, we will expand on
these topics as we introduce more neural network architectures.

1

Chapter 1

Neural Network Basics

• Neurons and Layers

• Neuron Types

• Activation Functions

• Logic Gates

This book is about neural networks and how to train, query, structure, and
interpret them. We present many neural network architectures as well as the
plethora of algorithms that can train these neural networks. Training is the
process in which a neural network is adapted to make predictions from data.
In this chapter, we will introduce the basic concepts that are most relevant to
the neural network types featured in the book.

Deep learning, a relatively new set of training techniques for multilayered
neural networks, is also a primary topic. It encompasses several algorithms
that can train complex types of neural networks. With the development of
deep learning, we now have effective methods to train neural networks with
many layers.

This chapter will include a discussion of the commonalities among the dif-
ferent neural networks. Additionally, you will learn how neurons form weighted
connections, how these neurons create layers, and how activation functions af-
fect the output of a layer. We begin with neurons and layers.

2 Neural Network Basics

1.1 Neurons and Layers

Most neural network structures use some type of neuron. Many different kinds
of neural networks exist, and programmers introduce experimental neural net-
work structures all the time. Consequently, it is not possible to cover every
neural network architecture. However, there are some commonalities among
neural network implementations. An algorithm that is called a neural network
will typically be composed of individual, interconnected units even though
these units may or may not be called neurons. In fact, the name for a neural
network processing unit varies among the literature sources. It could be called
a node, neuron, or unit.

Figure 1.1 shows the abstract structure of a single artificial neuron:

Figure 1.1: An Artificial Neuron

The artificial neuron receives input from one or more sources that may be
other neurons or data fed into the network from a computer program. This
input is usually floating-point or binary. Often binary input is encoded to
floating-point by representing true or false as 1 or 0. Sometimes the program

1.1 Neurons and Layers 3

also depicts the binary input as using a bipolar system with true as 1 and false
as -1.

An artificial neuron multiplies each of these inputs by a weight. Then it
adds these multiplications and passes this sum to an activation function. Some
neural networks do not use an activation function. Equation 1.1 summarizes
the calculated output of a neuron:

f(xi, wi) = φ(
∑
i

(wi · xi)) (1.1)

In the above equation, the variables x and w represent the input and weights of
the neuron. The variable i corresponds to the number of weights and inputs.
You must always have the same number of weights as inputs. Each weight is
multiplied by its respective input, and the products of these multiplications
are fed into an activation function that is denoted by the Greek letter φ (phi).
This process results in a single output from the neuron.

Figure 1.1 shows the structure with just one building block. You can
chain together many artificial neurons to build an artificial neural network
(ANN). Think of the artificial neurons as building blocks for which the input
and output circles are the connectors. Figure 1.2 shows an artificial neural
network composed of three neurons:

4 Neural Network Basics

Figure 1.2: Simple Artificial Neural Network (ANN)

The above diagram shows three interconnected neurons. This representa-
tion is essentially Figure 1.1, minus a few inputs, repeated three times and
then connected. It also has a total of four inputs and a single output. The
output of neurons N1 and N2 feed N3 to produce the output O. To calculate
the output for Figure 1.2, we perform Equation 1.1 three times. The first two
times calculate N1 and N2, and the third calculation uses the output of N1
and N2 to calculate N3.

1.1 Neurons and Layers 5

Neural network diagrams do not typically show the level of detail seen in
Figure 1.2. To simplify the diagram, we can omit the activation functions and
intermediate outputs, and this process results in Figure 1.3:

Figure 1.3: Simplified View of ANN

Looking at Figure 1.3, you can see two additional components of neural
networks. First, consider the inputs and outputs that are shown as abstract
dotted line circles. The input and output could be parts of a larger neural
network. However, the input and output are often a special type of neuron
that accepts data from the computer program using the neural network, and
the output neurons return a result back to the program. This type of neuron
is called an input neuron. We will discuss these neurons in the next section.

Figure 1.3 also shows the neurons arranged in layers. The input neurons are
the first layer, the N1 and N2 neurons create the second layer, the third layer
contains N3, and the fourth layer has O. While most neural networks arrange
neurons into layers, this is not always the case. Stanley (2002) introduced

6 Neural Network Basics

a neural network architecture called Neuroevolution of Augmenting Topolo-
gies (NEAT). NEAT neural networks can have a very jumbled, non-layered
architecture.

The neurons that form a layer share several characteristics. First, ev-
ery neuron in a layer has the same activation function. However, the layers
themselves might have different activation functions. Second, layers are fully
connected to the next layer. In other words, every neuron in one layer has a
connection to neurons in the previous layer. Figure 1.3 is not fully connected.
Several layers are missing connections. For example, I1 and N2 do not con-
nect. Figure 1.4 is a new version of Figure 1.3 that is fully connected and has
an additional layer.

Figure 1.4: Fully Connected Network

In Figure 1.4, you see a fully connected, multilayered neural network. Net-
works, such as this one, will always have an input and output layer. The
number of hidden layers determines the name of the network architecture.
The network in Figure 1.4 is a two-hidden-layer network. Most networks will
have between zero and two hidden layers. Unless you have implemented deep
learning strategies, networks with more than two hidden layers are rare.

1.2 Types of Neurons 7

You might also notice that the arrows always point downward or forward
from the input to the output. This type of neural network is called a feedfor-
ward neural network. Later in this book, we will see recurrent neural networks
that form inverted loops among the neurons.

1.2 Types of Neurons

In the last section, we briefly introduced the idea that different types of neurons
exist. Now we will explain all the neuron types described in the book. Not
every neural network will use every type of neuron. It is also possible for a
single neuron to fill the role of several different neuron types.

1.2.1 Input and Output Neurons

Nearly every neural network has input and output neurons. The input neurons
accept data from the program for the network. The output neuron provides
processed data from the network back to the program. These input and output
neurons will be grouped by the program into separate layers called the input
and output layer. However, for some network structures, the neurons can act
as both input and output. The Hopfield neural network, which we will discuss
in Chapter 3, “Hopfield & Boltzmann Machines,” is an example of a neural
network architecture in which neurons are both input and output.

The program normally represents the input to a neural network as an array
or vector. The number of elements contained in the vector must be equal to
the number of input neurons. For example, a neural network with three input
neurons might accept the following input vector:
[0 . 5 , 0 . 75 , 0 . 2]

Neural networks typically accept floating-point vectors as their input. Like-
wise, neural networks will output a vector with length equal to the number
of output neurons. The output will often be a single value from a single out-
put neuron. To be consistent, we will represent the output of a single output
neuron network as a single-element vector.

8 Neural Network Basics

Notice that input neurons do not have activation functions. As demon-
strated by Figure 1.1, input neurons are little more than placeholders. The
input is simply weighted and summed. Furthermore, the size of the input and
output vectors for the neural network will be the same if the neural network
has neurons that are both input and output.

1.2.2 Hidden Neurons

Hidden neurons have two important characteristics. First, hidden neurons
only receive input from other neurons, such as input or other hidden neurons.
Second, hidden neurons only output to other neurons, such as output or other
hidden neurons. Hidden neurons help the neural network understand the in-
put, and they form the output. However, they are not directly connected
to the incoming data or to the eventual output. Hidden neurons are often
grouped into fully connected hidden layers.

A common question for programmers concerns the number of hidden neu-
rons in a network. Since the answer to this question is complex, more than
one section of the book will include a relevant discussion of the number of hid-
den neurons. Prior to deep learning, it was generally suggested that anything
more than a single-hidden layer is excessive (Hornik, 1991). Researchers have
proven that a single-hidden-layer neural network can function as a universal
approximator. In other words, this network should be able to learn to produce
(or approximate) any output from any input as long as it has enough hidden
neurons in a single layer.

Another reason why researchers used to scoff at the idea of additional hid-
den layers is that these layers would impede the training of the neural network.
Training refers to the process that determines good weight values. Before re-
searchers introduced deep learning techniques, we simply did not have an
efficient way to train a deep network, which are neural networks with a large
number of hidden layers. Although a single-hidden-layer neural network can
theoretically learn anything, deep learning facilitates a more complex repre-
sentation of patterns in the data.

1.2 Types of Neurons 9

1.2.3 Bias Neurons

Programmers add bias neurons to neural networks to help them learn patterns.
Bias neurons function like an input neuron that always produces the value of 1.
Because the bias neurons have a constant output of 1, they are not connected
to the previous layer. The value of 1, which is called the bias activation, can be
set to values other than 1. However, 1 is the most common bias activation. Not
all neural networks have bias neurons. Figure 1.5 shows a single-hidden-layer
neural network with bias neurons:

Figure 1.5: Network with Bias Neurons

The above network contains three bias neurons. Every level, except for
the output layer, contains a single bias neuron. Bias neurons allow the output
of an activation function to be shifted. We will see exactly how this shifting
occurs later in the chapter when activation functions are discussed.

1.2.4 Context Neurons

Context neurons are used in recurrent neural networks. This type of neuron
allows the neural network to maintain state. As a result, a given input may not
always produce exactly the same output. This inconsistency is similar to the

10 Neural Network Basics

workings of biological brains. Consider how context factors in your response
when you hear a loud horn. If you hear the noise while you are crossing the
street, you might startle, stop walking, and look in the direction of the horn. If
you hear the horn while you are watching an action adventure film in a movie
theatre, you don’t respond in the same way. Therefore, prior inputs give you
the context for processing the audio input of a horn.

Time series is one application of context neurons. You might need to train
a neural network to learn input signals to perform speech recognition or to
predict trends in security prices. Context neurons are one way for neural
networks to deal with time series data. Figure 1.6 shows how context neurons
might be arranged in a neural network:

Figure 1.6: Context Neurons

1.3 Activation Functions 11

This neural network has a single input and output neuron. Between the
input and output layers are two hidden neurons and two context neurons.
Other than the two context neurons, this network is the same as previous
networks in the chapter.

Each context neuron holds a value that starts at 0 and always receives a
copy of either hidden 1 or hidden 2 from the previous use of the network. The
two dashed lines in Figure 1.6 mean that the context neuron is a direct copy
with no other weighting. The other lines indicate that the output is weighted
by one of the six weight values listed above. Equation 1.1 still calculates the
output in the same way. The value of the output neuron would be the sum
of all four inputs, multiplied by their weights, and applied to the activation
function.

A type of neural network called a simple recurrent neural network (SRN)
uses context neurons. Jordan and Elman networks are the two most common
types of SRN. Figure 1.6 shows an Elman SRN. Chapter 13, “Time Series and
Recurrent Networks,” includes a discussion of both types of SRN.

1.2.5 Other Neuron Types

The individual units that comprise a neural network are not always called
neurons. Researchers will sometimes refer to these neurons as nodes, units or
summations. In later chapters of the book, we will explore deep learning that
utilizes Boltzmann machines to fill the role of neurons. Regardless of the type
of unit, neural networks are almost always constructed of weighted connections
between these units.

1.3 Activation Functions

In neural network programming, activation or transfer functions establish
bounds for the output of neurons. Neural networks can use many different
activation functions. We will discuss the most common activation functions
in this section.

Choosing an activation function for your neural network is an important
consideration because it can affect how you must format input data. In this

12 Neural Network Basics

chapter, we will guide you on the selection of an activation function. Chapter
14, “Architecting Neural Networks,” will also contain additional details on the
selection process.

1.3.1 Linear Activation Function

The most basic activation function is the linear function because it does not
change the neuron output at all. Equation 1.2 shows how the program typically
implements a linear activation function:

φ(x) = x (1.2)
As you can observe, this activation function simply returns the value that the
neuron inputs passed to it. Figure 1.7 shows the graph for a linear activation
function:

Figure 1.7: Linear Activation Function

Regression neural networks, those that learn to provide numeric values, will
usually use a linear activation function on their output layer. Classification

1.3 Activation Functions 13

neural networks, those that determine an appropriate class for their input, will
usually utilize a softmax activation function for their output layer.

1.3.2 Step Activation Function

The step or threshold activation function is another simple activation function.
Neural networks were originally called perceptrons. McCulloch & Pitts (1943)
introduced the original perceptron and used a step activation function like
Equation 1.3:

φ(x) =
1, if x ≥ 0.5.

0, otherwise.
(1.3)

Equation 1.3 outputs a value of 1.0 for incoming values of 0.5 or higher and 0
for all other values. Step functions are often called threshold functions because
they only return 1 (true) for values that are above the specified threshold, as
seen in Figure 1.8:

Figure 1.8: Step Activation Function

14 Neural Network Basics

1.3.3 Sigmoid Activation Function

The sigmoid or logistic activation function is a very common choice for feed-
forward neural networks that need to output only positive numbers. Despite
its widespread use, the hyperbolic tangent or the rectified linear unit (ReLU)
activation function is usually a more suitable choice. We introduce the ReLU
activation function later in this chapter. Equation 1.4 shows the sigmoid ac-
tivation function:

φ(x) = 1
1 + e−x

(1.4)

Use the sigmoid function to ensure that values stay within a relatively small
range, as seen in Figure 1.9:

Figure 1.9: Sigmoid Activation Function

As you can see from the above graph, values above or below 0 are com-
pressed to the approximate range between 0 and 1.

1.3 Activation Functions 15

1.3.4 Hyperbolic Tangent Activation Function

The hyperbolic tangent function is also a very common activation function for
neural networks that must output values in the range between -1 and 1. This
activation function is simply the hyperbolic tangent (tanh) function, as shown
in Equation 1.5:

φ(x) = tanh(x) (1.5)
The graph of the hyperbolic tangent function has a similar shape to the sigmoid
activation function, as seen in Figure 1.10:

Figure 1.10: Hyperbolic Tangent Activation Function

The hyperbolic tangent function has several advantages over the sigmoid
activation function. These involve the derivatives used in the training of the
neural network, and they will be covered in Chapter 6, “Backpropagation
Training.”

16 Neural Network Basics

1.4 Rectified Linear Units (ReLU)

Introduced in 2000 by Teh & Hinton, the rectified linear unit (ReLU) has seen
very rapid adoption over the past few years. Prior to the ReLU activation func-
tion, the hyperbolic tangent was generally accepted as the activation function
of choice. Most current research now recommends the ReLU due to superior
training results. As a result, most neural networks should utilize the ReLU on
hidden layers and either softmax or linear on the output layer. Equation 1.6
shows the very simple ReLU function:

φ(x) = max(0, x) (1.6)
We will now examine why ReLU typically performs better than other activa-
tion functions for hidden layers. Part of the increased performance is due to
the fact that the ReLU activation function is a linear, non-saturating function.
Unlike the sigmoid/logistic or the hyperbolic tangent activation functions, the
ReLU does not saturate to -1, 0, or 1. A saturating activation function moves
towards and eventually attains a value. The hyperbolic tangent function, for
example, saturates to -1 as x decreases and to 1 as x increases. Figure 1.11
shows the graph of the ReLU activation function:

Figure 1.11: ReLU Activation Function

1.4 Rectified Linear Units (ReLU) 17

Most current research states that the hidden layers of your neural net-
work should use the ReLU activation. The reasons for the superiority of the
ReLU over hyperbolic tangent and sigmoid will be demonstrated in Chapter
6, “Backpropagation Training.”

1.4.1 Softmax Activation Function

The final activation function that we will examine is the softmax activation
function. Along with the linear activation function, softmax is usually found
in the output layer of a neural network. The softmax function is used on a
classification neural network. The neuron that has the highest value claims the
input as a member of its class. Because it is a preferable method, the softmax
activation function forces the output of the neural network to represent the
probability that the input falls into each of the classes. Without the softmax,
the neuron’s outputs are simply numeric values, with the highest indicating
the winning class.

To see how the softmax activation function is used, we will look at a com-
mon neural network classification problem. The iris data set contains four
measurements for 150 different iris flowers. Each of these flowers belongs to
one of three species of iris. When you provide the measurements of a flower,
the softmax function allows the neural network to give you the probability
that these measurements belong to each of the three species. For example,
the neural network might tell you that there is an 80% chance that the iris
is setosa, a 15% probability that it is virginica and only a 5% probability of
versicolour. Because these are probabilities, they must add up to 100%. There
could not be an 80% probability of setosa, a 75% probability of virginica and
a 20% probability of versicolour–this type of a result would be nonsensical.

18 Neural Network Basics

To classify input data into one of three iris species, you will need one output
neuron for each of the three species. The output neurons do not inherently
specify the probability of each of the three species. Therefore, it is desirable to
provide probabilities that sum to 100%. The neural network will tell you the
probability of a flower being each of the three species. To get the probability,
use the softmax function in Equation 1.7:

φi = ezi∑
j∈group

ezj
(1.7)

In the above equation, i represents the index of the output neuron (o) being
calculated, and j represents the indexes of all neurons in the group/level. The
variable z designates the array of output neurons. It’s important to note
that the softmax activation is calculated differently than the other activation
functions in this chapter. When softmax is the activation function, the output
of a single neuron is dependent on the other output neurons. In Equation 1.7,
you can observe that the output of the other output neurons is contained in
the variable z, as none of the other activation functions in this chapter utilize
z. Listing 1.1 implements softmax in pseudocode:

Listing 1.1: The Softmax Function
def softmax (neuron output) :

sum = 0
for v in neuron output :

sum = sum + v

sum = math . exp (sum)
proba = []
for i in range (len (neuron output))

proba [i] = math . exp (neuron output [i]) /sum
return proba

To see the softmax function in operation, refer to the following URL:
http://www.heatonresearch.com/aifh/vol3/softmax.html
Consider a trained neural network that classifies data into three categories,

such as the three iris species. In this case, you would use one output neuron
for each of the target classes. Consider if the neural network were to output
the following:

http://www.heatonresearch.com/aifh/vol3/softmax.html

1.4 Rectified Linear Units (ReLU) 19

Neuron 1 : s e t o s a : 0 . 9
Neuron 2 : v e r s i c o l o u r : 0 . 2
Neuron 3 : v i r g i n i c a : 0 . 4

From the above output, we can clearly see that the neural network considers
the data to represent a setosa iris. However, these numbers are not probabili-
ties. The 0.9 value does not represent a 90% likelihood of the data representing
a setosa. These values sum to 1.5. In order for them to be treated as prob-
abilities, they must sum to 1.0. The output vector for this neural network is
the following:
[0 . 9 , 0 . 2 , 0 . 4]

If this vector is provided to the softmax function, the following vector is re-
turned:
[0 .47548495534876745 , 0.2361188410001125 , 0 .28839620365112]

The above three values do sum to 1.0 and can be treated as probabilities. The
likelihood of the data representing a setosa iris is 48% because the first value in
the vector rounds to 0.48 (48%). You can calculate this value in the following
manner:
sum=exp (0 . 9)+exp (0 . 2)+exp (0 . 4) =5.17283056695839
j0= exp (0 . 9) /sum = 0.47548495534876745
j1= exp (0 . 2) /sum = 0.2361188410001125
j2= exp (0 . 4) /sum = 0.28839620365112

20 Neural Network Basics

1.4.2 What Role does Bias Play?

The activation functions seen in the previous section specify the output of a
single neuron. Together, the weight and bias of a neuron shape the output of
the activation to produce the desired output. To see how this process occurs,
consider Equation 1.8. It represents a single-input sigmoid activation neural
network.

f(x,w, b) = 1
1 + e−(wx+b) (1.8)

The x variable represents the single input to the neural network. The w and
b variables specify the weight and bias of the neural network. The above
equation is a combination of the Equation 1.1 that specifies a neural network
and Equation 1.4 that designates the sigmoid activation function.

The weights of the neuron allow you to adjust the slope or shape of the
activation function. Figure 1.12 shows the effect on the output of the sigmoid
activation function if the weight is varied:

Figure 1.12: Adjusting Neuron Weight

The above diagram shows several sigmoid curves using the following pa-
rameters:
f (x , 0 . 5 , 0 . 0)
f (x , 1 . 0 , 0 . 0)
f (x , 1 . 5 , 0 . 0)
f (x , 2 . 0 , 0 . 0)

1.4 Rectified Linear Units (ReLU) 21

To produce the curves, we did not use bias, which is evident in the third
parameter of 0 in each case. Using four weight values yields four different
sigmoid curves in Figure 1.11. No matter the weight, we always get the same
value of 0.5 when x is 0 because all of the curves hit the same point when x is
0. We might need the neural network to produce other values when the input
is near 0.5.

Bias does shift the sigmoid curve, which allows values other than 0.5 when
x is near 0. Figure 1.13 shows the effect of using a weight of 1.0 with several
different biases:

Figure 1.13: Adjusting Neuron Bias

The above diagram shows several sigmoid curves with the following param-
eters:
f (x , 1 . 0 , 1 . 0)
f (x , 1 . 0 , 0 . 5)
f (x , 1 . 0 , 1 . 5)
f (x , 1 . 0 , 2 . 0)

We used a weight of 1.0 for these curves in all cases. When we utilized several
different biases, sigmoid curves shifted to the left or right. Because all the
curves merge together at the top right or bottom left, it is not a complete
shift.

When we put bias and weights together, they produced a curve that created
the necessary output from a neuron. The above curves are the output from
only one neuron. In a complete network, the output from many different
neurons will combine to produce complex output patterns.

22 Neural Network Basics

1.5 Logic with Neural Networks

As a computer programmer, you are probably familiar with logical program-
ming. You can use the programming operators AND, OR, and NOT to govern
how a program makes decisions. These logical operators often define the actual
meaning of the weights and biases in a neural network. Consider the following
truth table:
0 AND 0 = 0
1 AND 0 = 0
0 AND 1 = 0
1 AND 1 = 1
0 OR 0 = 0
1 OR 0 = 1
0 OR 1 = 1
1 OR 1 = 1
NOT 0 = 1
NOT 1 = 0

The truth table specifies that if both sides of the AND operator are true, the
final output is also true. In all other cases, the result of the AND is false. This
definition fits with the English word “and” quite well. If you want a house with
a nice view AND a large backyard, then both requirements must be fulfilled
for you to choose a house. If you want a house that has a nice view or a large
backyard, then only one needs to be present.

These logical statements can become more complex. Consider if you want
a house that has a nice view and a large backyard. However, you would also
be satisfied with a house that has a small backyard yet is near a park. You
can express this idea in the following way:
([n i c e view] AND [l a r g e yard]) OR ((NOT [l a r g e yard]) and [park])

You can express the previous statement with the following logical operators:

(NV ∧ LY) ∨ (¬LY ∧ PK) (1.9)
In the above statement, the OR looks like a letter “v,” the AND looks like an
upside down “v,” and the NOT looks like half of a box.

1.5 Logic with Neural Networks 23

We can use neural networks to represent the basic logical operators of AND,
OR, and NOT, as seen in Figure 1.14:

Figure 1.14: Basic Logic Operators

The above diagram shows the weights and bias weight for each of the three
fundamental logical operators. You can easily calculate the output for any of
these operators using Equation 1.1. Consider the AND operator with two true
(1) inputs:
(1∗1) + (1∗1) + (−1.5) = 0 .5

We are using a step activation function. Because 0.5 is greater than or equal
to 0.5, the output is 1 or true. We can evaluate the expression where the first
input is false:
(1∗1) + (0∗1) + (−1.5) = −0.5

Because of the step activation function, this output is 0 or false.
We can build more complex logical structures from these neurons. Consider

the exclusive or (XOR) operator that has the following truth table:
0 XOR 0 = 0
1 XOR 0 = 1
0 XOR 1 = 1
1 XOR 1 = 0

24 Neural Network Basics

The XOR operator specifies that one, but not both, of the inputs can be
true. For example, one of the two cars will win the race, but not both of them
will win. The XOR operator can be written with the basic AND, OR, and
NOT operators as follows:

p⊕ q = (p ∨ q) ∧ ¬(p ∧ q) (1.10)
The plus with a circle is the symbol for the XOR operator, and p and q are
the two inputs to evaluate. The above expression makes sense if you think of
the XOR operator meaning p or q, but not both p and q. Figure 1.15 shows a
neural network that can represent an XOR operator:

Figure 1.15: XOR Neural Network

Calculating the above neural network would require several steps. First,
you must calculate the values for every node that is directly connected to the
inputs. In the case of the above neural network, there are two nodes. We will

1.6 Chapter Summary 25

show an example of calculating the XOR with the inputs [0,1]. We begin by
calculating the two topmost, unlabeled (hidden) nodes:
(0∗1) + (1∗1) − 0 .5 = 0 .5 = True
(0∗1) + (1∗1) − 1 .5 = −0.5 = False

Next we calculate the lower, unlabeled (hidden) node:
(0∗−1)+0.5 = 0 .5 = True

Finally, we calculate O1:
(1∗1) +(1∗1)−1.5 = 0 .5 = True

As you can see, you can manually wire the connections in a neural network
to produce the desired output. However, manually creating neural networks
is very tedious. The rest of the book will include several algorithms that can
automatically determine the weight and bias values.

1.6 Chapter Summary

In this chapter, we showed that a neural network is comprised of neurons,
layers, and activation functions. Fundamentally, the neurons in a neural net-
work might be input, hidden, or output in nature. Input and output neurons
pass information into and out of the neural network. Hidden neurons occur
between the input and output neurons and help process information.

Activation functions scale the output of a neuron. We also introduced
several activation functions. The two most common activation functions are
the sigmoid and hyperbolic tangent. The sigmoid function is appropriate for
networks in which only positive output is needed. The hyperbolic tangent
function supports both positive and negative output.

A neural network can build logical statements, and we demonstrated the
weights to generate AND, OR, and NOT operators. Using these three basic
operators, you can build more complex, logical expressions. We presented an
example of building an XOR operator.

Now that we’ve seen the basic structure of a neural network, we will explore
in the next two chapters several classic neural networks so that you can use

26 Neural Network Basics

this abstract structure. Classic neural network structures include the self-
organizing map, the Hopfield neural network, and the Boltzmann machine.
These classical neural networks form the foundation of other architectures
that we present in the book.

1.6 Chapter Summary 27

29

Chapter 2

Self-Organizing Maps

• Self-Organizing Maps

• Neighborhood Functions

• Unsupervised Training

• Dimensionality

Now that you have explored the abstract nature of a neural network introduced
in the previous chapter, you will learn about several classic neural network
types. This chapter covers one of the earliest types of neural networks that
are still useful today. Because neurons can be connected in various ways, many
different neural network architectures exist and build on the fundamental ideas
from Chapter 1, “Neural Network Basics.” We begin our examination of classic
neural networks with the self-organizing map (SOM).

The SOM is used to classify neural input data into one of several groups.
Training data is provided to the SOM, as well as the number of groups into
which you wish to classify these data. While training, the SOM will group
these data into groups. Data that have the most similar characteristics will
be grouped together. This process is very similar to clustering algorithms,
such as k-means. However, unlike k-means, which only groups an initial set of
data, the SOM can continue classifying new data beyond the initial data set
that was used for training. Unlike most of the neural networks in this book,

30 Self-Organizing Maps

SOM is unsupervised–you do not tell it what groups you expect the training
data to fall into. The SOM simply figures out the groups itself, based on your
training data, and then it classifies any future data into similar groups. Future
classification is performed using what the SOM learned from the training data.

2.1 Self-Organizing Maps

Kohonen (1988) introduced the self-organizing map (SOM), a neural network
consisting of an input layer and an output layer. The two-layer SOM is also
known as the Kohonen neural network and functions when the input layer
maps data to the output layer. As the program presents patterns to the input
layer, the output neuron is considered the winner when it contains the weights
most similar to the input. This similarity is calculated by comparing the
Euclidean distance between the set of weights from each output neuron. The
shortest Euclidean distance wins. Calculating Euclidean distance is the focus
of the next section.

Unlike the feedforward neural network discussed in Chapter 1, there are no
bias values in the SOM. It just has weights from the input layer to the output
layer. Additionally, it uses only a linear activation function. Figure 2.1 shows
the SOM:

2.1 Self-Organizing Maps 31

Figure 2.1: Self-Organizing Map

The SOM pictured above shows how the program maps three input neurons
to nine output neurons arranged in a three-by-three grid. The output neurons
of the SOM are often arranged into a grid, cube, or other higher-dimensional
construct. Because the ordering of the output neurons in most neural networks
typically conveys no meaning at all, this arrangement is very different. For
example, the close proximity of the output neurons #1 and #2 in most neural
networks is not significant. However, for the SOM, the closeness of one output
neuron to another is important. Computer vision applications make use of the
closeness of neurons to identify images more accurately. Convolutional neu-
ral networks (CNNs), which will be examined in Chapter 10, “Convolutional
Neural Networks,” group neurons into overlapping regions based on how close
these input neurons are to each other. When recognizing images, it is very im-
portant to consider which pixels are near each other. The program recognizes
patterns such as edges, solid regions, and lines by looking at pixels near each
other.

32 Self-Organizing Maps

Common structures for the output neurons of SOMs include the following:

• One-Dimensional: Output neurons are arranged in a line.

• Two-Dimensional: Output neurons are arranged in a grid.

• Three-Dimensional: Output neurons are arranged in a cube.

We will now see how to structure a simple SOM that learns to recognize colors
that are given as RGB vectors. The individual red, green, and blue values can
range between -1 and +1. Black or the absence of color designates -1, and +1
expresses the full intensity of red, green or blue. These three-color components
comprise the neural network input.

The output will be a 2,500-neuron grid arranged into 50 rows by 50 columns.
This SOM will organize similar colors near each other in this output grid. Fig-
ure 2.2 shows this output:

Figure 2.2: The Output Grid

Although the above figure may not be as clear in the black and white
editions of this book as it is in the color e-book editions, you can see similar
colors grouped near each other. A single, color-based SOM is a very simple
example that allows you to visualize the grouping capabilities of the SOM.

How are SOMs trained? The training process will update the weight ma-
trix, which is 3 by 2,500. To start, the program initializes the weight matrix
to random values. Then it randomly chooses 15 training colors.

2.1 Self-Organizing Maps 33

The training will progress through a series of iterations. Unlike other neural
network types, the training for SOM networks involves a fixed number of
iterations. To train the color-based SOM, we will use 1,000 iterations.

Each iteration will choose one random color sample from the training set, a
collection of RGB color vectors that each consist of three numbers. Likewise,
the weights between each of the 2,500 output neurons and the three input
neurons are a vector of three numbers. As training progresses, the program will
calculate the Euclidean distance between each weight vector and the current
training pattern. A Euclidean distance determines the difference between two
vectors of the same size. In this case, both vectors are three numbers that
represent an RGB color. We compare the color from the training data to
the three weights of each neuron. Equation 2.1 shows the Euclidean distance
calculation:

d(p,w) =
√√√√ n∑
i=1

(pi − wi)2 (2.1)

In the above equation, the variable p represents the training pattern. The
variable w corresponds to the weight vector. By squaring the differences be-
tween each vector component and taking the square root of the resulting sum,
we calculate the Euclidean distance. This calculation measures the difference
between each weight vector and the input training pattern.

The program calculates the Euclidean distance for every output neuron,
and the one with the shortest distance is called the best matching unit (BMU).
This neuron will learn the most from the current training pattern. The neigh-
bors of the BMU will learn less. To perform this training, the program loops
over every neuron and determines the extent to which it should be trained.
Neurons that are closer to the BMU will receive more training. Equation 2.2
can make this determination:

Wv(t+ 1) = Wv(t) + θ(v, t)α(t)(D(t)−Wv(t)) (2.2)
In the above equation, the variable t, also known as the iteration number, rep-
resents time. The purpose of the equation is to calculate the resulting weight
vector Wv(t+1). You will determine the next weight by adding to the current
weight, which is Wv(t). The end goal is to calculate how different the cur-

34 Self-Organizing Maps

rent weight is from the input vector, and it is done by the clause D(T)-Wv(t).
Training the SOM is the process of making a neuron’s weights more similar to
the training element. We do not want to simply assign the training element
to the output neurons weights, making them identical. Rather, we calculate
the difference between the training element and the neurons weights and scale
this difference by multiplying it by two ratios. The first ratio, represented by
θ (theta), is the neighborhood function. The second ratio, represented by α
(alpha), is a monotonically decreasing learning rate. In other words, as the
training progresses, the learning rate falls and never rises.

The neighborhood function considers how close each output neuron is to
the BMU. For neurons that are nearer, the neighborhood function will return a
value that approaches 1. For distant neighbors, the neighborhood function will
approach 0. This range between 0 and 1 controls how near and far neighbors
are trained. Nearer neighbors will receive more of the training adjustment
to their weights. In the next section, we will analyze how the neighborhood
function determines the training adjustments. In addition to the neighborhood
function, the learning rate also scales how much the program will adjust the
output neuron.

2.1.1 Understanding Neighborhood Functions

The neighborhood function determines the degree to which each output neuron
should receive a training adjustment from the current training pattern. The
function usually returns a value of 1 for the BMU. This value indicates that
the BMU should receive the most training. Those neurons farther from the
BMU will receive less training. The neighborhood function determines this
weighting.

If the output neurons are arranged in only one dimension, you should use
a simple one-dimensional neighborhood function, which will treat the output
as one long array of numbers. For instance, a one-dimensional network might
have 100 output neurons that form a long, single-dimensional array of 100
values.

A two-dimensional SOM might take these same 100 values and represent
them as a grid, perhaps of 10 rows and 10 columns. The actual structure
remains the same; the neural network has 100 output neurons. The only dif-

2.1 Self-Organizing Maps 35

ference is the neighborhood function. The first would utilize a one-dimensional
neighborhood function; the second would use a two-dimensional neighborhood
function. The function must consider this additional dimension and factor it
into the distance returned.

It is also possible to have three, four, and even more dimensional func-
tions for the neighborhood function. Typically, neighborhood functions are
expressed in vector form so that the number of dimensions does not matter.
To represent the dimensions, the Euclidian norm (represented by two vertical
bars) of all inputs is taken, as seen in Equation 2.3:

||p− w|| =
√√√√ n∑
i=1

(pi − wi)2 (2.3)

For the above equation, the variable p represents the dimensional inputs. The
variable w represents the weights. A single dimension has only a single value
for p. Calculating the Euclidian norm for [2-0] would simply be the following:

||2− 0|| =
√

22 = 2 (2.4)
Calculating the Euclidean norm for [2-0, 3-0] is only slightly more complex:

|| [2− 0, 3− 0] || =
√

22 + 32 = 3.605551 (2.5)
The most popular choice for SOMs is the two-dimensional neighborhood func-
tion. One-dimensional neighborhood functions are also common. However,
neighborhood functions with three or more dimensions are more unusual.
Choosing the number of dimensions really comes down to the programmer
deciding how many ways an output neuron can be close to another. This deci-
sion should not be taken lightly because each additional dimension significantly
affects the amount of memory and processing power needed. This additional
processing is why most programmers choose two or three dimensions for the
SOM application.

It can be difficult to understand why you might have more than three
dimensions. The following analogy illustrates the limitations of three dimen-
sions. While at the grocery store, John noticed a package of dried apples. As

36 Self-Organizing Maps

he turned his head to the left or right, traveling in the first dimension, he saw
other brands of dried apples. If he looked up or down, traveling in the second
dimension, he saw other types of dried fruit. The third dimension, depth, sim-
ply gives him more of exactly the same dried apples. He reached behind the
front item and found additional stock. However, there is no fourth dimension,
which could have been useful to allow fresh apples to be located near to the
dried apples. Because the supermarket only had three dimensions, this type of
link is not possible. Programmers do not have this limitation, and they must
decide if the extra processing time is necessary for the benefits of additional
dimensions.

The Gaussian function is a popular choice for a neighborhood function.
Equation 2.4 uses the Euclidean norm to calculate the Gaussian function for
any number of dimensions:

f(x, c, w) = e−(w||x−c||)2 (2.6)
The variable x represents the input to the Gaussian function, c represents the
center of the Gaussian function, and w represents the widths. The variables x,
w and c all are vectors with multiple dimensions. Figure 2.3 shows the graph
of the two-dimensional Gaussian function:

2.1 Self-Organizing Maps 37

Figure 2.3: A Single-Dimensional Gaussian Function

This figure illustrates why the Gaussian function is a popular choice for
a neighborhood function. Programmers frequently use the Gaussian function
to show the normal distribution, or bell curve. If the current output neuron
is the BMU, then its distance (x-axis) will be 0. As a result, the training
percent (y-axis) is 1.0 (100%). As the distance increases either positively
or negatively, the training percentage decreases. Once the distance is large
enough, the training percent approaches 0.

If the input vector to the Gaussian function has two dimensions, the graph
appears as Figure 2.4:

38 Self-Organizing Maps

Figure 2.4: A Two-Dimensional Gaussian Function

How does the algorithm use Gaussian constants with a neural network?
The center (c) of a neighborhood function is always 0, which centers the func-
tion on the origin. If the algorithm moves the center from the origin, a neuron
other than the BMU would receive the full learning. It is unlikely you would
ever want to move the center from the origin. For a multi-dimensional Gaus-
sian, set all centers to 0 in order to position the curve at the origin.

The only remaining Gaussian parameter is the width. You should set this
parameter to something slightly less than the entire width of the grid or array.
As training progresses, the width gradually decreases. Just like the learning
rate, the width should decrease monotonically.

2.1.2 Mexican Hat Neighborhood Function

Though it is the most popular, the Gaussian function is not the only neigh-
borhood function available. The Ricker wave, or Mexican hat function, is
another popular neighborhood function. Just like the Gaussian neighborhood
function, the vector length of the x dimensions is the basis for the Mexican
hat function, as seen in Equation 2.5:

2.1 Self-Organizing Maps 39

f(x, c, w) =
(

1− ||x− c||
2

w

)
e−
||x−c||2

2w (2.7)

Much the same as the Gaussian, the programmer can use the Mexican hat
function in one or more dimensions. Figure 2.5 shows the Mexican hat function
with one dimension:

Figure 2.5: A One-Dimensional Mexican Hat Function

40 Self-Organizing Maps

You must be aware that the Mexican hat function penalizes neighbors that
are between 2 and 4, or -2 and -4 units from the center. If your model seeks
to penalize near misses, the Mexican hat function is a good choice.

You can also use the Mexican hat function in two or more dimensions.
Figure 2.6 shows a two-dimensional Mexican hat function:

Figure 2.6: A Two-Dimensional Mexican Hat Function

Just like the one-dimensional version, the above Mexican hat penalizes near
misses. The only difference is that the two-dimensional Mexican hat function
utilizes a two-dimensional vector, which looks more like a Mexican sombrero
than the one-dimensional variant. Although it is possible to use more than
two dimensions, these variants are hard to visualize because we perceive space
in three dimensions.

2.1.3 Calculating SOM Error

Supervised training typically reports an error measurement that decreases as
training progresses. Unsupervised models, such as the SOM network, cannot

2.2 Chapter Summary 41

directly calculate an error because there is no expected output. However, an
estimation of the error can be calculated for the SOM (Masters, 1993).

We define the error as the longest Euclidean distance of all BMUs in a
training iteration. Each training set element has its own BMU. As learning
progresses, the longest distance should decrease. The results also indicate
the success of the SOM training since the values will tend to decrease as the
training continues.

2.2 Chapter Summary

In the first two chapters, we explained several classic neural network types.
Since Pitts (1943) introduced the neural network, many different neural net-
work types have been invented. We have focused primarily on the classic neural
network types that still have relevance and that establish the foundation for
other architectures that we will cover in later chapters of the book.

This chapter focused on the self-organizing map (SOM) that is an unsu-
pervised neural network type that can cluster data. The SOM has an input
neuron count equal to the number of attributes for the data to be clustered.
An output neuron count specifies the number of groups into which the data
should be clustered. The SOM neural network is trained in an unsupervised
manner. In other words, only the data points are provided to the neural net-
work; the expected outputs are not provided. The SOM network learns to
cluster the data points, especially the data points similar to the ones with
which it trained.

In the next chapter, we will examine two more classic neural network types:
the Hopfield neural network and the Boltzmann machine. These neural net-
work types are similar in that they both use an energy function during their
training process. The energy function measures the amount of energy in the
network. As training progresses, the energy should decrease as the network
learns.

43

Chapter 3

Hopfield & Boltzmann Machines

• Hopfield Networks

• Energy Functions

• Hebbian Learning

• Associative Memory

• Optimization

• Boltzmann Machines

This chapter will introduce the Hopfield network as well as the Boltzmann
machine. Though neither of these classic neural networks is used extensively
in modern AI applications, both are foundational to more modern algorithms.
The Boltzmann machine forms the foundation of the deep belief neural net-
work (DBNN), which is one of the fundamental algorithms of deep learning.
Hopfield networks are a very simple type of neural network that utilizes many
of the same features that the more complex feedforward neural networks em-
ploy.

44 Hopfield & Boltzmann Machines

3.1 Hopfield Neural Networks

The Hopfield neural network (Hopfield, 1982) is perhaps the simplest type
of neural network because it is a fully connected single layer, auto-associative
network. In other words, it has a single layer in which each neuron is connected
to every other neuron. Additionally, the term auto-associative means that the
neural network will return the entire pattern if it recognizes a pattern. As a
result, the network will fill in the gaps of incomplete or distorted patterns.

Figure 3.1 shows a Hopfield neural network with just four neurons. While
a four-neuron network is handy because it is small enough to visualize, it can
recognize a few patterns.

Figure 3.1: A Hopfield Neural Network with 12 Connections

Because every neuron in a Hopfield neural network is connected to every
other neuron, you might assume that a four-neuron network would contain a
four-by-four matrix, or 16 connections. However, 16 connections would require
that every neuron be connected to itself as well as to every other neuron. In
a Hopfield neural network, 16 connections do not occur; the actual number of
connections is 12.

These connections are weighted and stored in a matrix. A four-by-four
matrix would store the network pictured above. In fact, the diagonal of this
matrix would contain 0’s because there are no self-connections. All neural

3.1 Hopfield Neural Networks 45

network examples in this book will use some form of matrix to store their
weights.

Each neuron in a Hopfield network has a state of either true (1) or false (-
1). These states are initially the input to the Hopfield network and ultimately
become the output of the network. To determine whether a Hopfield neuron’s
state is -1 or 1, use Equation 3.1:

si ←
{

+1 if ∑j wijsj ≥ θi,
−1 otherwise. (3.1)

The above equation calculates the state (s) of neuron i. The state of a given
neuron greatly depends on the states of the other neurons. The equation
multiplies and sums the weight (w) and state (s) of the other neurons (j).
Essentially, the state of the current neuron (i) is +1 if this sum is greater than
the threshold (θ, theta). Otherwise it is -1. The threshold value is usually 0.

Because the state of a single neuron depends on the states of the remaining
neurons, the order in which the equation calculates the neurons is very impor-
tant. Programmers frequently employ the following two strategies to calculate
the states for all neurons in a Hopfield network:

• Asynchronous: This strategy updates only one neuron at a time. It
picks this neuron at random.

• Synchronous: It updates all neurons at the same time. This method is
less realistic since biological organisms lack a global clock that synchro-
nizes the neurons.

You should typically run a Hopfield network until the values of all neurons
stabilize. Despite the fact that each neuron is dependent on the states of the
others, the network will usually converge to a stable state.

It is important to have some indication of how close the network is to
converging to a stable state. You can calculate an energy value for Hopfield
networks. This value decreases as the Hopfield network moves to a more stable
state. To evaluate the stability of the network, you can use the energy function.
Equation 3.2 shows the energy calculation function:

46 Hopfield & Boltzmann Machines

E = −
∑
i<j

wij si sj +
∑
i

θi si

 (3.2)

Boltzmann machines, discussed later in the chapter, also utilize this energy
function. Boltzmann machines share many similarities with Hopfield neural
networks. When the threshold is 0, the second term of Equation 3.2 drops
out. Listing 3.1 contains the code to implement Equation 3.1:

Listing 3.1: Hopfield Energy
def energy (weights , s ta te , th r e sho ld) :

F i r s t term
a = 0
for i in range (neuron count) :

for j in range (neuron count) :
a = a + weight [i] [j] ∗ s t a t e [i] ∗ s t a t e [j]

a = a ∗ −0.5
Second term
b = 0
for i in range (neuron count) :

b = b + s t a t e [i] ∗ th r e sho ld [i]

Resu l t
return a + b

3.1.1 Training a Hopfield Network

You can train Hopfield networks to arrange their weights in a way that allows
the network to converge to desired patterns, also known as the training set.

These desired training patterns are a list of patterns with a Boolean value
for each of the neurons that comprise the Boltzmann machine. The following
data might represent a four-pattern training set for a Hopfield network with
eight neurons:
1 1 0 0 0 0 0 0
0 0 0 0 1 1 0 0
1 0 0 0 0 0 0 1
0 0 0 1 1 0 0 0

3.1 Hopfield Neural Networks 47

The above data are completely arbitrary; however, they do represent actual
patterns to train the Hopfield network. Once trained, a pattern similar to the
one listed below should find equilibrium with a pattern close to the training
set:
1 1 1 0 0 0 0 0

Therefore, the state of the Hopfield machine should change to the following
pattern:
1 1 0 0 0 0 0 0

You can train Hopfield networks with either Hebbian (Hopfield, 1982) or
Storkey (Storkey, 1999) learning. The Hebbian process for learning is bio-
logically plausible, and it is often expressed as, “cells that fire together, wire
together.” In other words, two neurons will become connected if they fre-
quently react to the same input stimulus. Equation 3.3 summarizes this be-
havior mathematically:

wij = 1
n

n∑
µ=1

εµi ε
µ
j (3.3)

The constant n represents the number of training set elements (ε, epsilon).
The weight matrix will be square and will contain rows and columns equal to
the number of neurons. The diagonal will always be 0 because a neuron is
not connected to itself. The other locations in the matrix will contain values
specifying how often two values in the training pattern are either +1 or -1.
Listing 3.2 contains the code to implement Equation 3.3:

Listing 3.2: Hopfield Hebbian Training
def add pattern (weights , pattern , n) :

for i in range (neuron count) :
for j in range (neuron count) :

i f i==j :
weights [i] [j] = 0

else :
we ights [i] [j] = weights [i] [j]

+ ((pattern [i] ∗ pattern [j]) /n)

48 Hopfield & Boltzmann Machines

We apply the add pattern method to add each of the training elements. The
parameter weights specifies the weight matrix, and the parameter pattern
specifies each individual training element. The variable n designates the num-
ber of elements in the training set.

It is possible that the equation and the code are not sufficient to show
how the weights are generated from input patterns. To help you visualize this
process, we provide an online Javascript application at the following URL:

http://www.heatonresearch.com/aifh/vol3/hopfield.html
Consider the following data to train a Hopfield network:

[1 , 0 , 0 , 1]
[0 , 1 , 1 , 0]

The previous data should produce a weight matrix like Figure 3.2:

Figure 3.2: Hopfield Matrix

To calculate the above matrix, divide 1 by the number of training set
elements. The result is 1/2, or 0.5. The value 0.5 is placed into every row
and column that has a 1 in the training set. For example, the first training
element has a 1 in neurons #0 and #3, resulting in a 0.5 being added to row
0, column 3 and row 3, column 0. The same process continues for the other
training set element.

Another common training technique for Hopfield neural networks is the
Storkey training algorithm. Hopfield neural networks trained with Storkey
have a greater capacity of patterns than the Hebbian method just described.
The Storkey algorithm is more complex than the Hebbian algorithm.

http://www.heatonresearch.com/aifh/vol3/hopfield.html

3.1 Hopfield Neural Networks 49

The first step in the Storkey algorithm is to calculate a value called the
local field. Equation 3.4 calculates this value:

hij =
∑

k=1,k 6=i,j
wikεk (3.4)

We calculate the local field value (h) for each weight element (i & j). Just as
before, we use the weights (w) and training set elements (ε, epsilon). Listing
3.3 provides the code to calculate the local field:

Listing 3.3: Calculate Storkey Local Field
def c a l c u l a t e l o c a l f i e l d (weights , i , j , pattern) :

sum = 0
for k in range (len (pattern)) :

i f k != i :
sum = sum + weights [i] [k] ∗ pattern [k]

return sum

Equation 3.5 has the local field value that calculates the needed change (∆W):

∆wij = 1
n
εiεj −

1
n
εihji −

1
n
εjhij (3.5)

Listing 3.4 calculates the values of the weight deltas:

Listing 3.4: Storkey Learning
def add pattern (weights , pattern) :

sum matrix = matrix (len (pattern) , len (pattern))
n = len (pattern)
for i in range (n) :

for j in range (n) :
t1 = (pattern [i] ∗ pattern [j]) /n
t2 = (pattern [i] ∗

c a l c u l a t e l o c a l f i e l d (weights , j , i , pattern)) /n
t3 = (pattern [j] ∗

c a l c u l a t e l o c a l f i e l d (weights , i , j , pattern)) /n
d = t1−t2−t3 ;
sum matrix [i] [j] = sum matrix [i] [j] + d

return sum matrix

50 Hopfield & Boltzmann Machines

Once you calculate the weight deltas, you can add them to the existing weight
matrix. If there is no existing weight matrix, simply allow the delta weight
matrix to become the weight matrix.

3.2 Hopfield-Tank Networks

In the last section, you learned that Hopfield networks can recall patterns.
They can also optimize problems such as the traveling salesman problem
(TSP). Hopfield and Tank (1984) introduced a special variant, the Hopfield-
Tank network, to find solutions to optimization problems.

The structure of a Hopfield-Tank network is somewhat different than a
standard Hopfield network. The neurons in a regular Hopfield neural network
can hold only the two discrete values of 0 or 1. However, a Hopfield-Tank
neuron can have any number in the range 0 to 1. Standard Hopfield networks
possess discrete values; Hopfield-Tank networks keep continuous values over
a range. Another important difference is that Hopfield-Tank networks use
sigmoid activation functions.

To utilize a Hopfield-Tank network, you must create a specialized energy
function to express the parameters of each problem to solve. However, pro-
ducing such an energy function can be a time-consuming task. Hopfield &
Tank (2008) demonstrated how to construct an energy function for the travel-
ing salesman problem (TSP). Other optimization functions, such as simulated
annealing and Nelder-Mead, do not require the creation of a complex energy
function. These general-purpose optimization algorithms typically perform
better than the older Hopfield-Tank optimization algorithms.

Because other algorithms are typically better choices for optimizations,
this book does not cover the optimization Hopfield-Tank network. Nelder-
Mead and simulated annealing were demonstrated in Artificial Intelligence for
Humans, Volume 1: Fundamental Algorithms. Chapter 6, “Backpropagation
Training,” will have a review of stochastic gradient descent (SGD), which is
one of the best training algorithms for feedforward neural networks.

3.3 Boltzmann Machines 51

3.3 Boltzmann Machines

Hinton & Sejnowski (1985) first introduced Boltzmann machines, but this neu-
ral network type has not enjoyed widespread use until recently. A special type
of Boltzmann machine, the restricted Boltzmann machine (RBM), is one of
the foundational technologies of deep learning and the deep belief neural net-
work (DBNN). In this chapter, we will introduce classic Boltzmann machines.
Chapter 9, “Deep Learning,” will include deep learning and the restricted
Boltzmann machine.

A Boltzmann machine is essentially a fully connected, two-layer neural
network. We refer to these layers as the visual and hidden layers. The visual
layer is analogous to the input layer in feedforward neural networks. Despite
the fact that a Boltzmann machine has a hidden layer, it functions more as an
output layer. This difference in the meaning of hidden layer is often a source
of confusion between Boltzmann machines and feedforward neural networks.
The Boltzmann machine has no hidden layer between the input and output
layers. Figure 3.3 shows the very simple structure of a Boltzmann machine:

Figure 3.3: Boltzmann Machine

52 Hopfield & Boltzmann Machines

The above Boltzmann machine has three hidden neurons and four visible
neurons. A Boltzmann machine is fully connected because every neuron has a
connection to every other neuron. However, no neuron is connected to itself.
This connectivity is what differentiates a Boltzmann machine from a restricted
Boltzmann machine (RBM), as seen in Figure 3.4:

Figure 3.4: Restricted Boltzmann Machine (RBM)

The above RBM is not fully connected. All hidden neurons are connected
to each visible neuron. However, there are no connections among the hidden
neurons nor are there connections among the visible neurons.

Like the Hopfield neural network, a Boltzmann machine’s neurons acquire
only binary states, either 0 or 1. While there is some research on continu-
ous Boltzmann machines capable of assigning decimal numbers to the neu-
rons, nearly all research on the Boltzmann machine centers on binary units.
Therefore, this book will not include information on continuous Boltzmann
machines.

3.3 Boltzmann Machines 53

Boltzmann machines are also called a generative model. In other words, a
Boltzmann machine does not generate constant output. The values presented
to the visible neurons of a Boltzmann machine, when considered with the
weights, specify a probability that the hidden neurons will assume a value of
1, as opposed to 0.

Although a Boltzmann machine and Hopfield neural networks have some
characteristics in common, there are several important differences:

• Hopfield networks suffer from recognizing certain false patterns.

• Boltzmann machines can store a greater capacity of patterns than Hop-
field networks.

• Hopfield networks require the input patterns to be uncorrelated.

• Boltzmann machines can be stacked to form layers.

3.3.1 Boltzmann Machine Probability

When the program queries the value of 1 of the Boltzmann machine’s hidden
neurons, it will randomly produce a 0 or 1. Equation 3.6 obtains the calculated
probability for that neuron with a value of 1:

pi=on = 1
1 + exp(−∆Ei

T
)

(3.6)

The above equation will calculate a number between 0 and 1 that represents a
probability. For example, if the value 0.75 were generated, the neuron would
return a 1 in 75% of the cases. Once it calculates the probability, it can produce
the output by generating a random number between 0 and 1 and returning 1
if the random number is below the probability.

The above equation returns the probability for neuron i being on and is
calculated with the delta energy (∆E) at i. The equation also uses the value
T, which represents the temperature of the system. Equation 3.2, from earlier
in the chapter, can calculate T. The value θ (theta) is the neuron’s bias value.

54 Hopfield & Boltzmann Machines

The change in energy is calculated using Equation 3.7:

∆Ei =
∑
j

wij sj + θi (3.7)

This value is the energy difference between 1 (on) and 0 (off) for neuron i. It
is calculated using the θ (theta), which represents the bias.

Although the values of the individual neurons are stochastic (random),
they will typically fall into equilibrium. To reach this equilibrium, you can
repeatedly calculate the network. Each time, a unit is chosen while Equation
3.6 sets its state. After running for an adequate period of time at a certain
temperature, the probability of a global state of the network will depend only
upon that global state’s energy.

In other words, the log probabilities of global states become linear in their
energies. This relationship is true when the machine is at thermal equilibrium,
which means that the probability distribution of global states has converged. If
we start running the network from a high temperature and gradually decrease
it until we reach a thermal equilibrium at a low temperature, then we may
converge to a distribution where the energy level fluctuates around the global
minimum. We call this process simulated annealing.

3.4 Applying the Boltzmann Machine

Most research around Boltzmann machines has moved to the restricted Boltz-
mann machine (RBM) that we will explain in Chapter 9, “Deep Learning.” In
this section, we will focus on the older, unrestricted form of the Boltzmann,
which has been applied to both optimization and recognition problems. We
will demonstrate an example of each type, beginning with an optimization
problem.

3.4.1 Traveling Salesman Problem

The traveling salesman problem (TSP) is a classic computer science problem
that is difficult to solve with traditional programming techniques. Artificial
intelligence can be applied to find potential solutions to the TSP. The program

3.4 Applying the Boltzmann Machine 55

must determine the order of a fixed set of cities that minimizes the total
distance covered. The traveling salesman is called a combinational problem.
If you are already familiar with TSP or you have read about it in a previous
volume in this series, you can skip this section.

56 Hopfield & Boltzmann Machines

TSP involves determining the shortest route for a traveling salesman who
must visit a certain number of cities. Although he can begin and end in any
city, he may visit each city only once. The TSP has several variants, some of
which allow multiple visits to cities or assign different values to cities. The
TSP in this chapter simply seeks the shortest possible route to visit each city
one time. Figure 3.5 shows the TSP problem used here, as well as a potential
shortest route:

Figure 3.5: The Traveling Salesman

Finding the shortest route may seem like an easy task for a normal iterative
program. However, as the number of cities increases, the number of possible
combinations increases drastically. If the problem has one or two cities, only
one or two routes are possible. If it includes three cities, the possible routes
increase to six. The following list shows how quickly the number of paths
grows:
1 c i t y has 1 path
2 c i t i e s have 2 paths
3 c i t i e s have 6 paths
4 c i t i e s have 24 paths
5 c i t i e s have 120 paths
6 c i t i e s have 720 paths
7 c i t i e s have 5 ,040 paths
8 c i t i e s have 40 ,320 paths
9 c i t i e s have 362 ,880 paths
10 c i t i e s have 3 ,628 ,800 paths
11 c i t i e s have 39 ,916 ,800 paths
12 c i t i e s have 479 ,001 ,600 paths

3.4 Applying the Boltzmann Machine 57

13 c i t i e s have 6 ,227 ,020 ,800 paths
. . .
50 c i t i e s have 3 .041 ∗ 10ˆ64 paths

In the above table, the formula to calculate total paths is the factorial. The
number of cities, n, is calculated using the factorial operator (!). The factorial
of some arbitrary value n is given by n * (n - 1) * (n - 2) * ... * 3 * 2 * 1.
These values become incredibly large when a program must do a brute-force
search. The traveling salesman problem is an example of a non-deterministic
polynomial time (NP) hard problem. Informally, NP-hard is defined as any
problem that lacks an efficient way to verify a correct solution. The TSP
fits this definition for more than 10 cities. You can find a formal definition
of NP-hard in Computers and Intractability: A Guide to the Theory of NP-
Completeness (Garey, 1979).

Dynamic programming is another common approach to the traveling sales-
man problem, as seen in xkcd.com comic in Figure 3.6:

Figure 3.6: The Traveling Salesman (from xkcd.com)

Although this book does not include a full discussion of dynamic program-
ming, understanding its essential function is valuable. Dynamic programming
breaks a large problem, such as the TSP, into smaller problems. You can
reuse work for many of the smaller programs, thereby decreasing the amount
of iterations required by a brute-force solution.

Unlike brute-force solutions and dynamic programming, a genetic algo-
rithm is not guaranteed to find the best solution. Although it will find a good

58 Hopfield & Boltzmann Machines

solution, the score might not be the best. The sample program examined in the
next section shows how a genetic algorithm produced an acceptable solution
for the 50-city problem in a matter of minutes.

3.4.2 Optimization Problems

To use the Boltzmann machine for an optimization problem, it is necessary to
represent a TSP solution in such a way that it fits onto the binary neurons
of the Boltzmann machine. Hopfield (1984) devised an encoding for the TSP
that both Boltzmann and Hopfield neural networks commonly use to represent
this combinational problem.

The algorithm arranges the neurons of the Hopfield or Boltzmann machine
on a square grid with the number of rows and columns equal to the number of
cities. Each column represents a city, and each row corresponds to a segment
in the journey. The number of segments in the journey is equal to the number
of cities, resulting in a square grid. Each row in the matrix should have exactly
one column with a value of 1. This value designates the destination city for
each of the trip segments. Consider the city path shown in Figure 3.7:

Figure 3.7: Four Cities to Visit

3.4 Applying the Boltzmann Machine 59

Because the problem includes four cities, the solution requires a four-by-
four grid. The first city visited is City #0. Therefore, the program marks 1 in
the first column of the first row. Likewise, visiting City #3 second produces a
1 in the final column of the second row. Figure 3.8 shows the complete path:

Figure 3.8: Encoding of Four Cities

Of course, the Boltzmann machines do not arrange neurons in a grid. To
represent the above path as a vector of values for the neuron, the rows are
simply placed sequentially. That is, the matrix is flattened in a row-wise
manner, resulting in the following vector:
[1 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 1 , 0 , 0 , 0 , 0 , 1 , 0]

To create a Boltzmann machine that can provide a solution to the TSP, the
program must align the weights and biases in such a way that allows the states
of the Boltzmann machine neurons to stabilize at a point that minimizes the
total distance between cities. Keep in mind that the above grid can also find
itself in many invalid states. Therefore, a valid grid must have the following:

• A single 1 value per row.

• A single 1 value per column.

60 Hopfield & Boltzmann Machines

As a result, the program needs to construct the weights so that the Boltz-
mann machine will not reach equilibrium in an invalid state. Listing 3.5 shows
the pseudocode that will generate this weight matrix:

Listing 3.5: Boltzmann Weights for TSP
gamma = 7
Source
for s ou r c e t ou r in range (NUM CITIES) :

for s o u r c e c i t y in range (NUM CITIES) :
s ou r c e index = sou r c e t ou r ∗ NUM CITIES + s o u r c e c i t y

Target
for targetTour in range (NUM CITIES) :

for (int t a r g e t c i t y in range (NUM CITIES) :
t a r g e t i n d e x = t a r g e t t o u r ∗ NUM CITIES + t a r g e t c i t y

Ca lcu l a t e the we igh t
weight = 0

Diagonal we igh t i s 0
i f sou r c e index != t a r g e t i n d e x :

Determine the next and prev ious e lement in the tour .
Wrap between 0 and l a s t e lement .

p r e v t a r g e t t o u r = wrapped next t a r g e t tour
n e x t t a r g e t t o u r = wrapped prev ious t a r g e t tour

I f same tour element or c i t y , then −gama
i f (s ou r c e t ou r == t a r g e t t o u r)

or (s o u r c e c i t y == t a r g e t c i t y) :
weight = −gamma

I f next or prev ious c i t y , −gamma
e l i f ((s ou r c e t ou r == p r e v t a r g e t t o u r)

or (s ou r c e t ou r == n e x t t a r g e t t o u r))
weight = −d i s t ance (s o u r c e c i t y , t a r g e t c i t y)

Otherwise 0
s e t we i gh t (source index , ta rge t index , weight)

Al l b i a s e s are −gamma/2
s e t b i a s (source index , −gamma / 2)

3.4 Applying the Boltzmann Machine 61

Figure 3.9 displays part of the created weight matrix for four cities:

Figure 3.9: Boltzmann Machine Weights for TSP (4 cities)

Depending on your viewing device, you might have difficulty reading the
above grid. Therefore, you can generate it for any number of cities with the
Javascript utility at the following URL:

http://www.heatonresearch.com/aifh/vol3/boltzmann_tsp_grid.html

http://www.heatonresearch.com/aifh/vol3/boltzmann_tsp_grid.html

62 Hopfield & Boltzmann Machines

Essentially, the weights have the following specifications:

• Matrix diagonal is assigned to 0. Shown as “\” in Figure 3.9.

• Same source and target position, set to -γ (gamma). Shown as -g in
Figure 3.9.

• Same source and target city, set to -γ (gamma). Shown as -g in Figure
3.9.

• Source and target next/previous cities, set to -distance. Shown as d(x,y)
in Figure 3.9.

• Otherwise, set to 0.

The matrix is symmetrical between the rows and columns.

3.4.3 Boltzmann Machine Training

The previous section showed the use of hard-coded weights to construct a
Boltzmann machine that was capable of finding solutions to the TSP. The
program constructed these weights through its knowledge of the problem.
Manually setting the weights is a necessary and difficult step for applying
Boltzmann machines to optimization problems. However, this book will not
include information about constructing weight matrices for general optimiza-
tion problems because Nelder-Mead and simulated annealing are more often
used for general-purpose algorithms.

3.5 Chapter Summary

In this chapter, we explained several classic neural network types. Since Pitts
(1943) introduced the neural network, many different neural network types
have been invented. We have focused primarily on the classic neural network
types that still have relevance and that establish the foundation for other
architectures that we will cover in later chapters of the book.

3.5 Chapter Summary 63

The self-organizing map (SOM) is an unsupervised neural network type
that can cluster data. The SOM has an input neuron count equal to the
number of attributes for the data to be clustered. An output neuron count
specifies the number of groups into which the data should be clustered.

The Hopfield neural network is a simple neural network type that can rec-
ognize patterns and optimize problems. You must create a special energy func-
tion for each type of optimization problem that requires the Hopfield neural
network. Because of this quality, programmers choose algorithms like Nelder-
Mead or simulated annealing instead of the optimized version of the Hopfield
neural network.

The Boltzmann machine is a neural network architecture that shares many
characteristics with the Hopfield neural network. However, unlike the Hopfield
network, you can stack the deep belief neural network (DBNN). This stacking
ability allows the Boltzmann machine to play a central role in the implemen-
tation of the deep belief neural network (DBNN), the basis of deep learning.

In the next chapter, we will examine the feedforward neural network, which
remains one of the most popular neural network types. This chapter will focus
on classic feedforward neural networks that use sigmoid and hyperbolic tangent
activation functions. New training algorithms, layer types, activation functions
and other innovations allow the classic feedforward neural network to be used
with deep learning.

65

Chapter 4

Feedforward Neural Networks

• Classification

• Regression

• Network Layers

• Normalization

In this chapter, we shall examine one of the most common neural network
architectures, the feedforword neural network. Because of its versatility, the
feedforward neural network architecture is very popular. Therefore, we will
explore how to train it and how it processes a pattern.

The term feedforward describes how this neural network processes and
recalls patterns. In a feedforward neural network, each layer of the neural
network contains connections to the next layer. For example, these connections
extend forward from the input to the hidden layer, but no connections move
backward. This arrangement differs from the Hopfield neural network featured
in the previous chapter. The Hopfield neural network was fully connected, and
its connections were both forward and backward. We will analyze the structure
of a feedforward neural network and the way it recalls a pattern later in the
chapter.

We can train feedforward neural networks with a variety of techniques
from the broad category of backpropagation algorithms, a form of supervised

66 Feedforward Neural Networks

training that we will discuss in greater detail in the next chapter. We will focus
on applying optimization algorithms to train the weights of a neural network
in this chapter. If you need more information about optimization algorithms,
Volumes 1 and 2 of Artificial Intelligence for Humans contain sections on this
subject. Although we can employ several optimization algorithms to train the
weights, we will primarily direct our attention to simulated annealing.

Optimization algorithms adjust a vector of numbers to achieve a good score
from an objective function. The objective function gives the neural network a
score based closely on the neural network’s output that matches the expected
output. This score allows any optimization algorithm to train neural networks.

A feedforward neural network is similar to the types of neural networks
that we have already examined. Just like other types of neural networks, the
feedforward neural network begins with an input layer that may connect to a
hidden layer or to the output layer. If it connects to a hidden layer, the hidden
layer can subsequently connect to another hidden layer or to the output layer.
Any number of hidden layers can exist.

4.1 Feedforward Neural Network Structure

In Chapter 1, “Neural Network Basics,” we discussed that neural networks
could have multiple hidden layers and analyzed the purposes of these layers.
In this chapter, we will focus more on the structure of the input and output
neurons, beginning with the structure of the output layer. The type of problem
dictates the structure of the output layer. A classification neural network will
have an output neuron for each class, whereas a regression neural network will
have one output neuron.

4.1.1 Single-Output Neural Networks for Regression

Though feedforward neural networks can have more than one output neuron,
we will begin by looking at a single-output neuron network in a regression
problem. A regression network is capable of predicting a single numeric value.
Figure 4.1 illustrates a single-output feedforward neural network:

4.1 Feedforward Neural Network Structure 67

Figure 4.1: Single-Output Feedforward Network

This neural network will output a single numeric value. We can use this
type of neural network in the following ways:

• Regression - Compute a number based on the inputs. (e.g., How many
miles per gallon (MPG) will a specific type of car achieve?)

• Binary Classification - Decide between two options, based on the
inputs. (e.g., Of the given characteristics, which is a cancerous tumor?)

68 Feedforward Neural Networks

We provide a regression example for this chapter that utilizes data about
various car models and predicts the miles per gallon that the car will achieve.
You can find this data set at the following URL:

https://archive.ics.uci.edu/ml/datasets/Auto+MPG
A small sampling of this data is shown here:

mpg, cy l i nde r s , displacement , horsepower , weight , a c c e l e r a t i o n ,
model year , o r i g i n , car name

18 ,8 ,307 ,130 ,3504 ,12 ,70 ,1 , ” c h e v r o l e t c h e v e l l e malibu ”
15 ,8 ,350 ,165 ,3693 ,11 ,70 ,1 , ” buick sky la rk 320”
18 ,8 ,318 ,150 ,3436 ,11 ,70 ,1 , ”plymouth s a t e l l i t e ”
16 ,8 ,304 ,150 ,3433 ,12 ,70 ,1 , ”amc r e b e l s s t ”

For a regression problem, the neural network would create columns such as
cylinders, displacement, horsepower, and weight to predict the MPG. These
values are all fields used in the above listing that specify qualities of each car.
In this case, the target is MPG; however, we could also utilize MPG, cylinders,
horsepower, weight, and acceleration to predict displacement.

To make the neural network perform regression on multiple values, you
might apply multiple output neurons. For example, cylinders, displacement,
and horsepower can predict both MPG and weight. Although a multi-output
neural network is capable of performing regression on two variables, we don’t
recommend this technique. You will usually achieve better results with sepa-
rate neural networks for each regression outcome that you are trying to predict.

https://archive.ics.uci.edu/ml/datasets/Auto+MPG

4.2 Calculating the Output 69

4.2 Calculating the Output

In Chapter 1, “Neural Network Basics,” we explored how to calculate the
individual neurons that comprise a neural network. As a brief review, the
output of an individual neuron is simply the weighted sum of its inputs and
a bias. This summation is passed to an activation function. Equation 4.1
summarizes the calculated output of a neural network:

f(xi, wi) = φ(
∑
i

(wi · xi)) (4.1)

The neuron multiplies the input vector (x) by the weights (w) and passes the
result into an activation function (φ, phi). The bias value is the last value in
the weight vector (w), and it is added by concatenating a 1 value to the input.
For example, consider a neuron that has two inputs and a bias. If the inputs
were 0.1 and 0.2, the input vector would appear as follows:
[0 . 1 , 0 . 2 , 1 . 0]

In this example, add the value 1.0 to support the bias weight. We can also
calculate the value with the following weight vector:
[0 . 0 1 , 0 . 02 , 0 . 3]

The values 0.01 and 0.02 are the weights for the two inputs to the neuron.
The value 0.3 is the bias. The weighted sum is calculated as follows:
(0 . 1 ∗ 0 . 0 1) + (0 . 2 ∗ 0 . 0 2) + (1 . 0 ∗ 0 . 3) = 0.305

The value 0.305 is then passed to an activation function.
Calculating an entire neural network is essentially a matter of following this

same procedure for each neuron in the network. This process allows you to
work your way from the input neurons to the output. You can implement this
process by creating objects for each connection in the network or by aligning
these connection values into matrices.

70 Feedforward Neural Networks

Object-oriented programming allows you to define an object for each neu-
ron and its weights. This approach can produce very readable code, but it has
two significant problems:

• The weights are stored across many objects.

• Performance suffers because it takes many function calls and memory
accesses to piece all the weights together.

It is valuable to create weights in the neural network as a single vector. A
variety of different optimization algorithms can adjust a vector to perfect a
scoring function. Artificial Intelligence for Humans, Volumes 1 & 2 include a
discussion of these optimization functions. Later in this chapter, we will see
how simulated annealing optimizes the weight vector for the neural network.

To construct a weight vector, we will first look at a network that has the
following attributes:

• Input Layer: 2 neurons, 1 bias

• Hidden Layer: 2 neurons, 1 bias

• Output Layer: 1 neuron

These characteristics give this network a total of 7 neurons.
You can number these neurons for the vector in the following manner:

Neuron 0 : Output 1
Neuron 1 : Hidden 1
Neuron 2 : Hidden 2
Neuron 3 : Bias 2 (s e t to 1 , u sua l l y)
Neuron 4 : Input 1
Neuron 5 : Input 2
Neuron 6 : Bias 1 (s e t to 1 , u sua l l y)

4.2 Calculating the Output 71

Graphically, you can see the network as Figure 4.2:

Figure 4.2: Simple Neural Network

You can create several additional vectors to define the structure of the
network. These vectors hold index values to allow the quick navigation of the
weight vector. These vectors are listed here:
layerFeedCounts : [1 , 2 , 2]
layerCounts : [1 , 3 , 3]
l aye r Index : [0 , 1 , 4]
layerOutput : [0 . 0 , 0 . 0 , 0 . 0 , 1 . 0 , 0 . 0 , 0 . 0 , 1 . 0]
weightIndex : [0 , 3 , 9]

72 Feedforward Neural Networks

Each vector stores the values for the output layer first and works its way to the
input layer. The layerFeedCounts vector holds the count of non-bias neurons
in each layer. This characteristic is essentially the count of non-bias neurons.
The layerOutput vector holds the current value of each neuron. Initially, all
neurons start with 0.0 except for the bias neurons, which start at 1.0. The
layerIndex vector holds indexes to where each layer begins in the layerOuput
vector. The weightIndex holds indexes to the location of each layer in the
weight vector.

The weights are stored in their own vector and structured as follows:
Weight 0 : H1−>O1
Weight 1 : H2−>O1
Weight 2 : B2−>O1
Weight 3 : I1−>H1
Weight 4 : I2−>H1
Weight 5 : B1−>H1
Weight 6 : I1−>H2
Weight 7 : I2−>H2
Weight 8 : B1−>H2

Once the vectors have been arranged, calculating the output of the neural
network is relatively easy. Listing 4.1 can accomplish this calculation:

Listing 4.1: Calculate Feedforward Output
def compute (net , input) :

sourceIndex = len (net . layerOutput)
− net . layerCounts [len (net . layerCounts) − 1]

Copy the input in t o the layerOutput v ec t o r
array copy (input , 0 , net . layerOutput , sourceIndex , net .

inputCount)
Ca lcu l a t e each l a y e r
for i in reversed (range (0 , len (l aye r Index))) :

compute layer (i)
update con t ex t va l u e s
o f f s e t = net . contextTarge tOf f s e t [0]

Create r e s u l t
r e s u l t = vecto r (net . outputCount)
array copy (net . layerOutput , 0 , r e s u l t , 0 , net . outputCount)
return r e s u l t

4.3 Initializing Weights 73

def compute layer (net , currentLayer) :
inputIndex = net . l aye r Index [currentLayer]
outputIndex = net . l aye r Index [currentLayer − 1]
i nputS i z e = net . layerCounts [currentLayer]
outputS ize = net . layerFeedCounts [currentLayer − 1]
index = t h i s . weightIndex [currentLayer − 1]
l i m i t x = outputIndex + outputS ize
l i m i t y = inputIndex + inputS i z e
weigh t va l u e s
for x in range (outputIndex , l i m i t x) :

sum = 0 ;
for y in range (inputIndex , l i m i t y) :

sum += net . weights [index] ∗ net . layerOutput [y]
net . layerSums [x] = sum
net . layerOutput [x] = sum
index = index + 1

net . a c t i va t i onFunc t i on s [currentLayer − 1]
. a c t i v a t i o n f u n c t i o n (

net . layerOutput , outputIndex , outputS ize)

4.3 Initializing Weights

The weights of a neural network determine the output for the neural network.
The process of training can adjust these weights so the neural network produces
useful output. Most neural network training algorithms begin by initializing
the weights to a random state. Training then progresses through a series of
iterations that continuously improve the weights to produce better output.

The random weights of a neural network impact how well that neural net-
work can be trained. If a neural network fails to train, you can remedy the
problem by simply restarting with a new set of random weights. However, this
solution can be frustrating when you are experimenting with the architecture
of a neural network and trying different combinations of hidden layers and
neurons. If you add a new layer, and the network’s performance improves, you
must ask yourself if this improvement resulted from the new layer or from a
new set of weights. Because of this uncertainty, we look for two key attributes

74 Feedforward Neural Networks

in a weight initialization algorithm:

• How consistently does this algorithm provide good weights?

• How much of an advantage do the weights of the algorithm provide?

One of the most common, yet least effective, approaches to weight initializa-
tion is to set the weights to random values within a specific range. Numbers
between -1 and +1 or -5 and +5 are often the choice. If you want to ensure
that you get the same set of random weights each time, you should use a seed.
The seed specifies a set of predefined random weights to use. For example, a
seed of 1000 might produce random weights of 0.5, 0.75, and 0.2. These values
are still random; you cannot predict them, yet you will always get these values
when you choose a seed of 1000.

Not all seeds are created equal. One problem with random weight ini-
tialization is that the random weights created by some seeds are much more
difficult to train than others. In fact, the weights can be so bad that training
is impossible. If you find that you cannot train a neural network with a par-
ticular weight set, you should generate a new set of weights using a different
seed.

Because weight initialization is a problem, there has been considerable
research around it. Over the years we have studied this research and added
six different weight initialization routines to the Encog project. From our
research, the Xavier weight initialization algorithm, introduced in 2006 by
Glorot & Bengio, produces good weights with reasonable consistency. This
relatively simple algorithm uses normally distributed random numbers.

To use the Xavier weight initialization, it is necessary to understand that
normally distributed random numbers are not the typical random numbers
between 0 and 1 that most programming languages generate. In fact, normally
distributed random numbers are centered on a mean (µ, mu) that is typically 0.
If 0 is the center (mean), then you will get an equal number of random numbers
above and below 0. The next question is how far these random numbers will
venture from 0. In theory, you could end up with both positive and negative
numbers close to the maximum positive and negative ranges supported by
your computer. However, the reality is that you will more likely see random
numbers that are between 0 and three standard deviations from the center.

4.3 Initializing Weights 75

The standard deviation σ (sigma) parameter specifies the size of this stan-
dard deviation. For example, if you specified a standard deviation of 10, then
you would mainly see random numbers between -30 and +30, and the numbers
nearer to 0 have a much higher probability of being selected. Figure 4.3 shows
the normal distribution:

Figure 4.3: The Normal Distribution

The above figure illustrates that the center, which in this case is 0, will be
generated with a 0.4 (40%) probability. Additionally, the probability decreases
very quickly beyond -2 or +2 standard deviations. By defining the center and
how large the standard deviations are, you are able to control the range of
random numbers that you will receive.

Most programming languages have the capability of generating normally
distributed random numbers. In general, the Box-Muller algorithm is the basis
for this functionality. The examples in this volume will either use the built-in
normal random number generator or the Box-Muller algorithm to transform
regular, uniformly distributed random numbers into a normal distribution.
Artificial Intelligence for Humans, Volume 1: Fundamental Algorithms con-
tains an explanation of the Box-Muller algorithm, but you do not necessarily
need to understand it in order to grasp the ideas in this book.

The Xavier weight initialization sets all of the weights to normally dis-
tributed random numbers. These weights are always centered at 0; however,

76 Feedforward Neural Networks

their standard deviation varies depending on how many connections are present
for the current layer of weights. Specifically, Equation 4.2 can determine the
standard deviation:

V ar(W) = 2
nin + nout

(4.2)

The above equation shows how to obtain the variance for all of the weights.
The square root of the variance is the standard deviation. Most random num-
ber generators accept a standard deviation rather than a variance. As a result,
you usually need to take the square root of the above equation. Figure 4.4
shows how one layer might be initialized:

Figure 4.4: Xavier Initialization of a Layer

This process is completed for each layer in the neural network.

4.4 Radial-Basis Function Networks

Radial-basis function (RBF) networks are a type of feedforward neural network
introduced by Broomhead and Lowe (1988). These networks can be used
for both classification and regression. Though they can solve a variety of
problems, RBF networks seem to losing popularity. By their very definition,
RBF networks cannot be used in conjunction with deep learning.

4.4 Radial-Basis Function Networks 77

The RBF network utilizes a parameter vector, a model that specifies weights
and coefficients, in order to allow the input to generate the correct output. By
adjusting a random parameter vector, the RBF network produces output con-
sistent with the iris data set. The process of adjusting the parameter vector to
produce the desired output is called training. Many different methods exist for
training an RBF network. The parameter vectors also represent its long-term
memory.

In the next section, we will briefly review RBFs and describe the exact
makeup of these vectors.

4.4.1 Radial-Basis Functions

Because many AI algorithms utilize radial-basis functions, they are a very
important concept to understand. A radial-basis function is symmetric with
respect to its center, which is usually somewhere along the x-axis. The RBF
will reach its maximum value or peak at the center. Whereas a typical setting
for the peak in RBF networks is 1, the center varies accordingly.

RBFs can have many dimensions. Regardless of the number of dimensions
in the vector passed to the RBF, its output will always be a single scalar value.

RBFs are quite common in AI. We will start with the most prevalent,
the Gaussian function. Figure 4.5 shows a graph of a 1D Gaussian function
centered at 0:

78 Feedforward Neural Networks

Figure 4.5: Gaussian Function

You might recognize the above curve as a normal distribution or a bell
curve, which is a radial-basis function. The RBFs, such as a Gaussian function,
can selectively scale numeric values. Consider Figure 4.5 above. If you applied
this function to scale numeric values, the result would have maximum intensity
at the center. As you moved from the center, the intensity would diminish in
either the positive or negative directions.

Before we can look at the equation for the Gaussian RBF, we must consider
how to process the multiple dimensions. RBFs accept multi-dimensional input
and return a single value by calculating the distance between the input and
the center vector. This distance is called r. The RBF center and input to the
RBF must always have the same number of dimensions for the calculation to
occur. Once we calculate r, we can determine the individual RBF. All of the
RBFs use this calculated r.

Equation 4.3 shows how to calculate r :

r = ||x− xi|| (4.3)
The double vertical bars that you see in the above equation signify that the
function describes a distance or a norm. In certain cases, these distances can
vary; however, RBFs typically utilize Euclidean distance. As a result, the
examples that we provide in this book always apply the Euclidean distance.
Therefore, r is simply the Euclidean distance between the center and the x
vector. In each of the RBFs in this section, we will use this value r. Equation

4.4 Radial-Basis Function Networks 79

4.4 shows the equation for a Gaussian RBF:

φ(r) = e−r
2 (4.4)

Once you’ve calculated r, determining the RBF is fairly easy. The Greek letter
φ, which you see at the left of the equation, always represents the RBF. The
constant e in Equation 4.4 represents Euler’s number, or the natural base, and
is approximately 2.71828.

80 Feedforward Neural Networks

4.4.2 Radial-Basis Function Networks

RBF networks provide a weighted summation of one or more radial-basis func-
tions; each of these functions receives the weighted input attributes in order
to predict the output. Consider the RBF network as a long equation that
contains the parameter vector. Equation 4.5 shows the equation needed to
calculate the output of this network:

f(X) =
N∑
i=1

aip(||biX − ci||) (4.5)

Note that the double vertical bars in the above equation signify that you must
calculate the distance. Because these symbols do not specify which distance
algorithm to use, you can select the algorithm. In the above equation, X is the
input vector of attributes; c is the vector center of the RBF; p is the chosen
RBF (Gaussian, for example); a is the vector coefficient (or weight) for each
RBF; and b specifies the vector coefficient to weight the input attributes.

In our example, we will apply an RBF network to the iris data set. Figure
4.6 provides a graphic representation of this application:

Figure 4.6: The RBF Network for the Iris Data

4.4 Radial-Basis Function Networks 81

The above network contains four inputs (the length and width of petals and
sepals) that indicate the features that describe each iris species. The above
diagram assumes that we are using one-of-n encoding for the three different
iris species. Using equilateral encoding for only two outputs is also possible.
To keep things simple, we will use one-of-n and arbitrarily choose three RBFs.
Even though additional RBFs allow the model to learn more complex data
sets, they require more time to process.

Arrows represent all coefficients from the equation. In Equation 4.5, b
represents the arrows between the input attributes and the RBFs. Similarly,
a represents the arrows between the RBFs and the summation. Notice also
the bias box, which is a synthetic function that always returns a value of 1.
Because the bias function’s output is constant, the program does not require
inputs. The weights from the bias to the summation specify the y-intercept
for the equation. In short, bias is not always bad. This case demonstrates
that bias is an important component to the RBF network. Bias nodes are also
very common in neural networks.

Because multiple summations exist, you can see the development of a clas-
sification problem. The highest summation specifies the predicted class. A
regression problem indicates that the model will output a single numeric value.

You will also notice that Figure 4.4 contains a bias node in the place of
an additional RBF. Unlike the RBF, the bias node does not accept any input.
It always outputs a constant value of 1. Of course, this constant value of 1
is multiplied by a coefficient value, which always causes the coefficient to be
directly added to the output, regardless of the input. When the input is 0,
bias nodes are very useful because they allow the RBF layer to output values
despite the low value of the input.

82 Feedforward Neural Networks

The long-term memory vector for the RBF network has several different
components:

• Input coefficients

• Output/Summation coefficients

• RBF width scalars (same width in all dimensions)

• RBF center vectors

The RBF network will store all of these components as a single vector that
will become its long-term memory. Then an optimization algorithm can set
the vector to values that will produce the correct iris species for the features
presented. This book contains several optimization algorithms that can train
an RBF network.

In conclusion, this introduction provided a basic overview of vectors, dis-
tance, and RBF networks. Since this discussion included only the prerequisite
material to understand Volume 3, refer to Volumes 1 and 2 for a more thorough
explanation of these topics.

4.5 Normalizing Data

Normalization was briefly mentioned previously in this book. In this section,
we will see exactly how it is performed. Data are not usually presented to
the neural network in exactly the same raw form as you found it. Usually
data are scaled to a specific range in a process called normalization. There are
many different ways to normalize data. For a full summary, refer to Artificial
Intelligence for Humans, Volume 1: Fundamental Algorithms. This chapter
will present a few normalization methods most useful for neural networks.

4.5.1 One-of-N Encoding

If you have a categorical value, such as the species of an iris, the make of an
automobile, or the digit label in the MNIST data set, you should use one-of-n

4.5 Normalizing Data 83

encoding. This type of encoding is sometimes referred to as one-hot encoding.
To encode in this way, you would use one output neuron for each class in
the problem. Recall the MNSIT data set from the book’s introduction, where
you have images for digits between 0 and 9. This problem is most commonly
encoded as ten output neurons with a softmax activation function that gives
the probability of the input being one of these digits. Using one-of-n encoding,
the ten digits might be encoded as follows:
0 −> [1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0]
1 −> [0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0]
2 −> [0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0]
3 −> [0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0]
4 −> [0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0]
5 −> [0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0]
6 −> [0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0]
7 −> [0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0]
8 −> [0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0]
0 −> [0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1]

One-of-n encoding should always be used when the classes have no ordering.
Another example of this type of encoding is the make of an automobile. Usu-
ally the list of automakers is unordered unless there is some meaning you wish
to convey by this ordering. For example, you might order the automakers by
the number of years in business. However, this classification should only be
done if the number of years in business has meaning to your problem. If there
is truly no order, then one-of-n should always be used.

Because you can easily order the digits, you might wonder why we use
one-of-n encoding for them. However, the order of the digits does not mean
the program can recognize them. The fact that “1” and “2” are numerically
next to each other does nothing to help the program recognize the image.
Therefore, we should not use a single-output neuron that simply outputs the
digit recognized. The digits 0-9 are categories, not actual numeric values.
Encoding categories with a single numeric value is detrimental to the neural
network’s decisions process.

84 Feedforward Neural Networks

Both the input and output can use one-of-n encoding. The above listing
used 0’s and 1’s. Normally you will use the rectified linear unit (ReLU) and
softmax activation, and this type of encoding is normal. However, if you are
working with a hyperbolic tangent activation function, you should utilize a
value of -1 for the 0’s to match the hyperbolic tangent’s range of -1 to 1.

If you have an extremely large number of classes, one-of-n encoding can
become cumbersome because you must have a neuron for every class. In
such cases, you have several options. First, you might find a way to order
your categories. With this ordering, your categories can now be encoded as
a numeric value, which would be the current category’s position within the
ordered list.

Another approach to dealing with an extremely large number of cate-
gories is frequency-inverse document frequency (TF-IDF) encoding because
each class essentially becomes the probability of that class’s occurrence rela-
tive to the others. In this way, TF-IDF allows the program to map a large
number of classes to a single neuron. A complete discussion of TF-IDF is
beyond the scope of this book; however, it is built into many machine learning
frameworks for languages such as R, Python, and some others.

4.5.2 Range Normalization

If you have a real number or an ordered list of categories, you might choose
range normalization because it simply maps the input data’s range into the
range of your activation function. Sigmoid, ReLU and softmax use a range
between 0 and 1, whereas hyperbolic tangent uses a range between -1 and 1.

You can normalize a number with Equation 4.6:

norm(x, dL, dH , nL, nH) = (x−dL)(nH−nL)
(dH−dL) + nL (4.6)

To perform the normalization, you need the high and low values of the data
to be normalized, given by dl and dh in the equation above. Similarly, you
need the high and low values to normalize into (usually 0 and 1), given by nl
and nh.

4.5 Normalizing Data 85

Sometimes you will need to undo the normalization performed on a number
and return it to a denormalized state. Equation 4.7 performs this operation:

denorm(x, dL, dH , nL, nH) = (dL−dH)x−(nH ·dL)+dH ·nL

(nL−nH) (4.7)
A very simple way to think of range normalization is percentages. Consider the
following analogy. You see an advertisement stating that you will receive a $10
(USD) reduction on a product, and you have to decide if this deal is worthwhile.
If you are buying a t-shirt, this offer is probably a good deal; however, if you are
buying a car, $10 does not really matter. Furthermore, you need to be familiar
with the current value of US dollars in order to make your decision. The
situation changes if you learn that the merchant had offered a 10% discount.
Thus, the value is now more meaningful. No matter if you are buying a t-shirt,
car or even a house, the 10% discount has clear ramifications on the problem
because it transcends currencies. In other words, the percentage is a type of
normalization. Just like in the analogy, normalizing to a range helps the neural
network evaluate all inputs with equal significance.

4.5.3 Z-Score Normalization

Z-score normalization is the most common normalization for either a real num-
ber or an ordered list. For nearly all applications, z-score normalization should
be used in place of range normalization. This normalization type is based on
the statistical concept of z-scores, the same technique for grading exams on a
curve. Z-scores provide even more information than percentages.

Consider the following example. Student A scored 85% of the points on
her exam. Student B scored 75% of the points on his exam. Which student
earned the better grade? If the professor is simply reporting the percentage
of correct points, then student A earned a better score. However, you might
change your answer if you learned that the average (mean) score for student
A’s very easy exam was 95%. Similarly, you might reconsider your position if
you discovered that student B’s class had an average score of 65%. Student
B performed above average on his exam. Even though student A earned a
better score, she performed below average. To truly report a curved score (a
z-score) you must have the mean score and the standard deviation. Equation
4.8 shows the calculation of a mean:

86 Feedforward Neural Networks

µ = 1
N

N∑
i=1

xi (4.8)

You can calculate the mean (µ, mu) by adding all of the scores and dividing
by the number of scores. This process is the same as taking an average. Now
that you have the average, you need the standard deviation. If you had a
mean score of 50 points, then everyone taking the exam varied from the mean
by some amount. The average amount that students varied from the mean is
essentially the standard deviation. Equation 4.9 shows the calculation of the
standard deviation (σ, sigma):

σ =

√√√√ 1
N

N∑
i=1

(xi − µ)2 (4.9)

Essentially, the process of taking a standard deviation is squaring and summing
each score’s difference from the mean. These values are added together and the
square root is taken of this total. Now that you have the standard deviation,
you can calculate the z-score with Equation 4.10:

z = x− µ
σ

(4.10)

Listing 4.2 shows the pseudocode needed to calculate a z-score:

Listing 4.2: Calculate a Z-Score
Data to score :
data = [5 , 10 , 3 , 20 , 4]
Sum the va l u e s
sum = 0
for d in data :

sum = sum + d
Ca lcu l a t e mean
mean = f loat (sum) / len (data)
print (”Mean : ” + mean)
Ca lcu l a t e the var iance
var iance = 0
for d in data :

var i ance = var iance + ((mean−d) ∗∗2)
var iance = var iance / len (data)

4.5 Normalizing Data 87

print (” Variance : ” + var iance)
Ca lcu l a t e the standard d e v i a t i o n
sdev = sq r t (var i ance)
print (” Standard Deviat ion : ” + sdev)
Ca lcu l a t e z s core
z s c o r e = []
for d in data :

z s c o r e . append ((d−mean) / sdev)
print (”Z−Scores : ” + str (z s c o r e))

The above code will result in the following output:
Mean : 8 .4
Variance : 39.440000000000005
Standard Deviat ion : 6.280127387243033
Z−Scores : [−0.5413902920037097 , 0 .2547719021193927 ,

−0.8598551696529507 , 1 .8470962903655976 , −0.7006227308283302]

The z-score is a numeric value where 0 represents a score that is exactly the
mean. A positive z-score is above average; a negative z-score is below average.
To help visualize z-scores, consider the following mapping between z-scores
and letter grades:
<−2.0 = D+
−2.0 = C−
−1.5 = C
−1.0 = C+
−0.5 = B−
0 .0 = B
+0.5 = B+
+1.0 = A−
+1.5 = A
+2.0 = A+

We took the mapping listed above from an undergraduate syllabus. There is a
great deal of variation on z-score to letter grade mapping. Most professors will
set the 0.0 z-score to either a C or a B, depending on if the professor/university
considers C or B to represent an average grade. The above professor considered
B to be average. The z-score works well for neural network input as it is
centered at 0 and will very rarely go above +3 and below -3.

88 Feedforward Neural Networks

4.5.4 Complex Normalization

The input to a neural network is commonly called its feature vector. The
process of creating a feature vector is critical to mapping your raw data to a
form that the neural network can comprehend. The process of mapping the
raw data to a feature vector is called encoding. To see this mapping at work,
consider the auto MPG data set:
1 . mpg : numeric
2 . c y l i n d e r s : numeric , 3 unique
3 . d i sp lacement : numeric
4 . horsepower : numeric
5 . weight : numeric
6 . a c c e l e r a t i o n : numeric
7 . model year : numeric , 3 unique
8 . o r i g i n : numeric , 7 unique
9 . car name : s t r i n g (unique for each in s t ance)

To encode the above data, we will use MPG as the output and treat the data
set as regression. The MPG feature will be z-score encoded, and it falls within
the range of the linear activation function that we will use on the output.

We will discard the car name. Cylinders and model-year are both one-of-n
encoded, the remaining fields will be z-score encoded. The following feature
vector results:
Input Feature Vector :
Feature 1 : cy l i nde r s −2, −1 no , +1 yes
Feature 2 : cy l i nde r s −4, −1 no , +1 yes
Feature 3 : cy l i nde r s −8, −1 no , +1 yes
Feature 4 : d i sp lacement z−s c o r e
Feature 5 : horsepower z−s c o r e
Feature 6 : weight z−s c o r e
Feature 7 : a c c e l e r a t i o n z−s c o r e
Feature 8 : model year −1977 , −1 no , +1 yes
Feature 9 : model year −1978 , −1 no , +1 yes
Feature 10 : model year −1979 , −1 no , +1 yes
Feature 11 : o r i g i n −1
Feature 12 : o r i g i n −2
Feature 13 : o r i g i n −3
Output :
mpg z−s c o r e

4.6 Chapter Summary 89

As you can see, the feature vector has grown from the nine raw fields to thirteen
features plus an output. A neural network for these data would have thirteen
input neurons and a single output. Assuming a single-hidden layer of twenty
neurons with the ReLU activation, this network would look like Figure 4.7:

Figure 4.7: Simple Regression Neural Network

4.6 Chapter Summary

Feedforward neural networks are one of the most common algorithms in ar-
tificial intelligence. In this chapter, we introduced the multilayer feedforward
neural network and the radial-basis function (RBF) neural network. Classifi-
cation and regression apply both of these types of neural network.

90 Feedforward Neural Networks

Feedforward networks have well-defined layers. The input layer accepts the
input from the computer program. The output layer returns the processing
result of the neural network to the calling program. Between these layers are
hidden neurons that help the neural network to recognize a pattern presented
at the input layer and produce the correct result on the output layer.

RBF neural networks use a series of radial-basis functions for their hidden
layer. In addition to the weights, it is also possible to change the widths
and centers of these RBFs. Though an RBF and feedforward network can
approximate any function, they go about the process in different ways.

So far, we’ve seen only how to calculate the values for neural networks.
Training is the process by which we adjust the weights of neural networks so
that the neural network outputs the values that we desire. To train neural net-
works, we also need to have a way to evaluate it. The next chapter introduces
both training and validation of neural networks.

4.6 Chapter Summary 91

93

Chapter 5

Training & Evaluation

• Mean Squared Error

• Sensitivity & Specificity

• ROC Curve

• Simulated Annealing

So far we’ve seen how to calculate a neural network based on its weights; how-
ever, we have not seen where these weight values actually come from. Training
is the process where a neural network’s weights are adjusted to produce the de-
sired output. Training uses evaluation, which is the process where the output
of the neural network is evaluated against the expected output.

This chapter will cover evaluation and introduce training. Because neu-
ral networks can be trained and evaluated in many different ways, we need
a consistent method to judge them. An objective function evaluates a neural
network and returns a score. Training adjusts the neural network in ways
that might achieve better results. Typically, the objective function wants
lower scores. The process of attempting to achieve lower scores is called mini-
mization. You might establish maximization problems, in which the objective
function wants higher scores. Therefore, you can use most training algorithms
for either minimization or maximization problems.

94 Training & Evaluation

You can optimize weights of a neural network with any continuous op-
timization algorithm, such as simulated annealing, particle swarm optimiza-
tion, genetic algorithms, hill climbing, Nelder-Mead, or random walk. In this
chapter, we will introduce simulated annealing as a simple training algorithm.
However, in addition to optimization algorithms, you can train neural networks
with backpropagation. Chapter 6, “Backpropagation Training,” and Chapter
7, “Other Propagation Training,” will introduce several algorithms that were
based on the backpropagation training algorithms introduced in Chapter 6.

5.1 Evaluating Classification

Classification is the process by which a neural network attempts to classify the
input into one or more classes. The simplest way of evaluating a classification
network is to track the percentage of training set items that were classified
incorrectly. We typically score human examples in this manner. For example,
you might have taken multiple-choice exams in school in which you had to
shade in a bubble for choices A, B, C, or D. If you chose the wrong letter on
a 10-question exam, you would earn a 90%. In the same way, we can grade
computers; however, most classification algorithms do not simply choose A, B,
C, or D. Computers typically report a classification as their percent confidence
in each class. Figure 5.1 shows how a computer and a human might both
respond to question #1 on an exam:

Figure 5.1: Human Exam versus Computer Classification

As you can see, the human test taker marked the first question as “B.”
However, the computer test taker had an 80% (0.8) confidence in “B” and was
also somewhat sure with 10% (0.1) on “A.” The computer then distributed
the remaining points on the other two. In the simplest sense, the machine
would get 80% of the score for this question if the correct answer were “B.”

5.1 Evaluating Classification 95

The machine would get only 5% (0.05) of the points if the correct answer were
“D.”

5.1.1 Binary Classification

Binary classification occurs when a neural network must choose between two
options, which might be true/false, yes/no, correct/incorrect, or buy/sell. To
see how to use binary classification, we will consider a classification system for
a credit card company. This classification system must decide how to respond
to a new potential customer. This system will either “issue a credit card” or
“decline a credit card.”

When you have only two classes that you can consider, the objective func-
tion’s score is the number of false positive predictions versus the number of
false negatives. False negatives and false positives are both types of errors,
and it is important to understand the difference. For the previous example,
issuing a credit card would be the positive. A false positive occurs when a
credit card is issued to someone who will become a bad credit risk. A false
negative happens when a credit card is declined to someone who would have
been a good risk.

Because only two options exist, we can choose the mistake that is the more
serious type of error, a false positive or a false negative. For most banks
issuing credit cards, a false positive is worse than a false negative. Declining
a potentially good credit card holder is better than accepting a credit card
holder who would cause the bank to undertake expensive collection activities.

A classification problem seeks to assign the input into one or more cat-
egories. A binary classification employs a single-output neural network to
classify into two categories. Consider the auto MPG data set that is available
from the University of California at Irvine (UCI) machine learning repository
at the following URL:

https://archive.ics.uci.edu/ml/datasets/Auto+MPG
For the auto MPG data set, we might create classifications for cars built

inside of the United States. The field named origin provides information on
the location of the car assembly. Thus, the single-output neuron would give a

https://archive.ics.uci.edu/ml/datasets/Auto+MPG

96 Training & Evaluation

number that indicates the probability that the car was built in the USA.
To perform this prediction, you need to change the origin field to hold

values between 1 and the low-end range of the activation function. For exam-
ple, the low end of the range for the sigmoid function is 0; for the hyperbolic
tangent, it is -1. The neural network will output a value that indicates the
probability of a car being made in the USA or elsewhere. Values closer to 1
indicate a higher probability of the car originating in the USA; values closer
to 0 or -1 indicate a car originating from outside the USA.

You must choose a cutoff value that differentiates these predictions into
either USA or non-USA. If USA is 1.0 and non-USA is 0.0, we could just
choose 0.5 as the cutoff value. Consequently, a car with an output of 0.6
would be USA, and 0.4 would be non-USA.

Invariably, this neural network will produce errors as it classifies cars. A
USA-made car might yield an output of 0.45; however, because the neural
network is below the cutoff value, it would not put the car in the correct
category. Because we designed this neural network to classify USA-made cars,
this error would be called a false negative. In other words, the neural network
indicated that the car was non-USA, creating a negative result because the car
was actually from the USA. Thus, the negative classification was false. This
error is also known as a type-2 error.

Similarly, the network might falsely classify a non-USA car as USA. This
error is a false positive, or a type-1. Neural networks prone to produce false
positives are characterized as more specific. Similarly, neural networks that
produce more false negatives are labeled as more sensitive. Figure 5.2 sum-
marizes these relationships between true/false, positives/negatives, type-1 &
type-2 errors, and sensitivity/specificity:

Figure 5.2: Types of Errors

Setting the cutoff for the output neuron selects whether sensitivity or speci-

5.1 Evaluating Classification 97

ficity is more important. It is possible to make a neural network more sensitive
or specific by adjusting this cutoff, as illustrated in Figure 5.3:

Figure 5.3: Sensitivity vs. Specificity

As the limit line moves left, the network becomes more specific. The de-
crease in the size of the true negative (TN) area makes this specificity evident.
Conversely, as the limit line moves right, the network becomes more sensitive.
This sensitivity is evident in the decrease in size of the true positive (TP) area.

Increases in sensitivity will usually result in a decrease of specificity. Figure
5.4 shows a neural limit designed to make the neural network very sensitive:

98 Training & Evaluation

Figure 5.4: Sensitive Cutoff

The neural network can also be calibrated for greater sensitivity, as shown
in Figure 5.5:

Figure 5.5: Specific Cutoff

Attaining 100% specificity or sensitivity is not necessarily good. A medical
test can reach 100% specificity by simply predicting that everyone does not
have the disease. This test will never commit a false positive error because it
never gave a positive answer. Obviously, this test is not useful. Highly specific
or sensitive neural networks produce the same meaningless result. We need a

5.1 Evaluating Classification 99

way to evaluate the total effectiveness of the neural network that is independent
of the cutoff point. The total prediction rate combines the percentage of true
positives and true negatives. Equation 5.1 can calculate the total prediction
rate:

TPR = TP + TN

TP + TN + FP + FN
(5.1)

Additionally, you can visualize the total prediction rate (TPR) with a receiver
operator characteristic (ROC) chart, as seen in Figure 5.6:

Figure 5.6: Receiver Operator Characteristic (ROC) Chart

The above chart shows three different ROC curves. The dashed line shows
an ROC with zero predictive power. The dotted line shows a better neural
network, and the solid line shows a nearly perfect neural network. To under-
stand how to read an ROC chart, look first at the origin, which is marked

100 Training & Evaluation

by 0%. All ROC lines always start at the origin and move to the upper-right
corner where true positive (TP) and false positive (FP) are both 100%.

The y-axis shows the TP percentages from 0 to 100. As you move up the y-
axis, both TP and FP increase. As TP increases, so does sensitivity; however,
specificity falls. The ROC chart allows you to select the level of sensitivity
you need, but it also shows you the number of FPs you must accept to achieve
that level of sensitivity.

The worst network, the dashed line, always has a 50% total prediction rate.
Given that there are only two outcomes, this result is no better than random
guessing. To get 100% TP, you must also have a 100% FP, which still results
in half of the predictions being wrong.

The following URL allows you to experiment with a simple neural network
and ROC curve:

http://www.heatonresearch.com/aifh/vol3/anneal_roc.html
We can train the neural network at the above URL with simulated an-

nealing. Each time an annealing epoch is completed, the neural network im-
proves. We can measure this improvement by the mean squared error calcu-
lation (MSE). As the MSE drops, the ROC curve stretches towards the upper
left corner. We will describe the MSE in greater detail later in this chapter.
For now, simply think of it as a measurement of the neural network’s error
when you compare it to the expected output. A lower MSE is desirable. Fig-
ure 5.7 shows the ROC curve after we have trained the network for a number
of iterations:

http://www.heatonresearch.com/aifh/vol3/anneal_roc.html

5.1 Evaluating Classification 101

Figure 5.7: ROC Curve

It is important to note that the goal is not always to maximize the total
prediction rate. Sometimes a false positive (FP) is better than a false negative
(FN.) Consider a neural network that predicts a bridge collapse. A FP means
that the program predicts a collapse when the bridge was actually safe. In
this case, checking a structurally sound bridge would waste an engineer’s time.
On the other hand, a FN would mean that the neural network predicted the
bridge was safe when it actually collapsed. A bridge collapsing is a much worse
outcome than wasting the time of an engineer. Therefore, you should arrange
this type of neural network so that it is overly specific.

To evaluate the total effectiveness of the network, you should consider the
area under the curve (AUC). The optimal AUC would be 1.0, which is a
100% (1.0) x 100% (1.0) rectangle that pushes the area under the curve to the
maximum. When reading an ROC curve, the more effective neural networks
have more space under the curve. The curves shown previously, in Figure 5.6,
correspond with this assessment.

102 Training & Evaluation

5.1.2 Multi-Class Classification

If you want to predict more than one outcome, you will need more than one
output neuron. Because a single neuron can predict two outcomes, a neural
network with two output neurons is somewhat rare. If there are three or more
outcomes, there will be three or more output neurons. Artificial Intelligence
for Humans, Volume 1: Fundamental Algorithms does show a method that
can encode three outcomes into two output neurons.

Consider Fisher’s iris data set. This data set contains four different mea-
surements for three different species of iris flower. The following URL contains
this data set:

https://archive.ics.uci.edu/ml/datasets/Iris
Sample data from the iris data set is shown here:

s epa l l eng th , sepa l width , p e t a l l eng th , peta l width , s p e c i e s
5 . 1 , 3 . 5 , 1 . 4 , 0 . 2 , I r i s −s e t o s a
4 . 9 , 3 . 0 , 1 . 4 , 0 . 2 , I r i s −s e t o s a
7 . 0 , 3 . 2 , 4 . 7 , 1 . 4 , I r i s −v e r s i c o l o u r
6 . 4 , 3 . 2 , 4 . 5 , 1 . 5 , I r i s −v e r s i c o l o u r
6 . 3 , 3 . 3 , 6 . 0 , 2 . 5 , I r i s −v i r g i n i c a
5 . 8 , 2 . 7 , 5 . 1 , 1 . 9 , I r i s −v i r g i n i c a

Four measurements can predict the species. If you are interested in reading
more about how to measure an iris flower, refer to the above link. For this
prediction, the meaning of the four measurements does not really matter.
These measurements will teach the neural network to predict. Figure 5.8
shows a neural network structure that can predict the iris data set:

https://archive.ics.uci.edu/ml/datasets/Iris

5.1 Evaluating Classification 103

Figure 5.8: Iris Data Set Neural Network

The above neural network accepts the four measurements and outputs three
numbers. Each output corresponds with one of the iris species. The output
neuron that produces the highest number determines the species predicted.

5.1.3 Log Loss

Classification networks can derive a class from the input data. For example,
the four iris measurements can group the data into the three species of iris.
One easy method to evaluate classification is to treat it like a multiple-choice
exam and return a percent score. Although this technique is common, most
machine learning models do not answer multiple-choice questions like you did
in school. Consider how the following question might appear on an exam:
1 . Would an i r i s s e t o s a have a s epa l l ength o f 5 . 1 cm,

a s epa l width o f 3 . 5 cm, a pe ta l l ength o f 1 . 4 cm, and
a pe ta l width o f 0 . 2 cm?

A) True
B) Fal se

104 Training & Evaluation

This question is exactly the type that a neural network must face in a clas-
sification task. However, the neural network will not respond with an answer
of “True” or “False.” It will answer the question in the following manner:
True : 80%

The above response means that the neural network is 80% sure that the flower
is a setosa. This technique would be very handy in school. If you could not
decide between true and false, you could simply place 80% on “True.” Scoring
is relatively easy because you receive your percentage value for the correct
answer. In this case, if “True” were the correct answer, your score would be
80% for that question.

However, log loss is not quite that simple. Equation 5.2 is the equation for
log loss:

log loss = − 1
N

N∑
i=1

(yi log(ŷi) + (1− yi) log(1− ŷi)) (5.2)

You should use this equation only as an objective function for classifications
that have two outcomes. The variable y-hat is the neural network’s prediction,
and the variable y is the known correct answer. In this case, y will always be
0 or 1. The training data have no probabilities. The neural network classifies
it either into one class (1) or the other (0).

The variable N represents the number of elements in the training set–the
number of questions in the test. We divide by N because this process is
customary for an average. We also begin the equation with a negative because
the log function is always negative over the domain 0 to 1. This negation
allows a positive score for the training to minimize.

You will notice two terms are separated by the addition (+). Each contains
a log function. Because y will be either 0 or 1, then one of these two terms
will cancel out to 0. If y is 0, then the first term will reduce to 0. If y is 1,
then the second term will be 0.

If your prediction for the first class of a two-class prediction is y-hat, then
your prediction for the second class is 1 minus y-hat. Essentially, if your
prediction for class A is 70% (0.7), then your prediction for class B is 30%
(0.3). Your score will increase by the log of your prediction for the correct

5.1 Evaluating Classification 105

class. If the neural network had predicted 1.0 for class A, and the correct
answer was A, your score would increase by log (1), which is 0. For log loss,
we seek a low score, so a correct answer results in 0. Some of these log values
for a neural network’s probability estimate for the correct class:

• -log(1.0) = 0

• -log(0.95) = 0.02

• -log(0.9) = 0.05

• -log(0.8) = 0.1

• -log(0.5) = 0.3

• -log(0.1) = 1

• -log(0.01) = 2

• -log(1.0e-12) = 12

• -log(0.0) = negative infinity

As you can see, giving a low confidence to the correct answer affects the score
the most. Because log (0) is negative infinity, we typically impose a minimum
value. Of course, the above log values are for a single training set element.
We will average the log values for the entire training set.

5.1.4 Multi-Class Log Loss

If more than two outcomes are classified, then we must use multi-class log loss.
This loss function is very closely related to the binary log loss just described.
Equation 5.3 shows the equation for multi-class log loss:

multi-class log loss = − 1
N

N∑
i=1

M∑
j=1

yi,j log(ŷi,j) (5.3)

In the above equation, N is the number of training set elements, and M rep-
resents the number of categories for the classification process. Conceptually,

106 Training & Evaluation

the multi-class log loss objective function works similarly to single log loss.
The above equation essentially gives you a score that is the average of the
negative-log of your prediction for the correct class on each of the data sets.
The inner most sigma-summation in the above equation functions as an if-then
statement and allows only the correct class with a y of 1.0 to contribute to the
summation.

5.2 Evaluating Regression

Mean squared error (MSE) calculation is the most commonly utilized process
for evaluating regression machine learning. Most Internet examples of neural
networks, support vector machines, and other models apply MSE (Draper,
1998), shown in Equation 5.4:

MSE = 1
n

n∑
i=1

(ŷi − yi)2 (5.4)

In the above equation, y is the ideal output and y-hat is the actual output.
The mean squared error is essentially the mean of the squares of the individual
differences. Because the individual differences are squared, the positive or
negative nature of the difference does not matter to MSE.

You can evaluate classification problems with MSE. To evaluate classifica-
tion output with MSE, each class’s probability is simply treated as a numeric
output. The expected output simply has a value of 1.0 for the correct class,
and 0 for the others. For example, if the first class were correct, and the
other three classes incorrect, the expected outcome vector would look like the
following:
[1 . 0 , 0 , 0 , 0]

You can use nearly any regression objective function for classification in this
way. A variety of functions, such as root mean square (RMS) and sum of
squares error (SSE) can evaluate regression, and we discussed these functions
in Artificial Intelligence for Humans, Volume 1: Fundamental Algorithms.

5.3 Training with Simulated Annealing 107

5.3 Training with Simulated Annealing

To train a neural network, you must define its tasks. An objective function,
otherwise known as scoring or loss functions, can generate these tasks. Essen-
tially, an objective function evaluates the neural network and returns a number
indicating the usefulness of the neural network. The training process modifies
the weights of the neural network in each iteration so the value returned from
the objective function improves.

Simulated annealing is an effective optimization technique that we exam-
ined in Artificial Intelligence for Humans Volume 1. In this chapter, we will
review simulated annealing as well as show you how any vector optimization
function can improve the weights of a feedforward neural network. In the next
chapter, we will examine even more advanced optimization techniques that
take advantage of the differentiable loss function.

As a review, simulated annealing works by first assigning the weight vector
of a neural network to random values. This vector is treated like a position, and
the program evaluates every possible move from that position. To understand
how a neural network weight vector translates to a position, think of a neural
network with just three weights. In the real world, we consider position in
terms of the x, y and z coordinates. We can write any position as a vector of
3. If we are willing to move in a single dimension, we could move in a total
of six different directions. We would have the option of moving forward or
backwards in the x, y or z dimensions.

Simulated annealing functions by moving forward or backwards in all avail-
able dimensions. If the algorithm takes the best move, a simple hill-climbing
algorithm would result. Hill climbing only improves scores. Therefore, it is
called a greedy algorithm. To reach the best position, an algorithm will some-
time need to move to a lower position. As a result, simulated annealing very
much follows the expression of two steps forward, one step back.

In other words, simulated annealing will sometimes allow a move to a
weight configuration with a worse score. The probability of accepting such a
move starts high and decreases. This probability is known as the current tem-
perature, and it simulates the actual metallurgical annealing process where a
metal cools and achieves greater hardness. Figure 5.9 shows the entire process:

108 Training & Evaluation

Figure 5.9: Simulated Annealing

A feedforward neural network can utilize simulated annealing to learn the
iris data set. The following program shows the output from this training:
I t e r a t i o n #1, Score =0.3937 , k=1,kMax=100 , t =343.5891 , prob =0.9998
I t e r a t i o n #2, Score =0.3937 , k=2,kMax=100 , t =295.1336 , prob =0.9997
I t e r a t i o n #3, Score =0.3835 , k=3,kMax=100 , t =253.5118 , prob =0.9989
I t e r a t i o n #4, Score =0.3835 , k=4,kMax=100 , t =217.7597 , prob =0.9988
I t e r a t i o n #5, Score =0.3835 , k=5,kMax=100 , t =187.0496 , prob =0.9997
I t e r a t i o n #6, Score =0.3835 , k=6,kMax=100 , t =160.6705 , prob =0.9997
I t e r a t i o n #7, Score =0.3835 , k=7,kMax=100 , t =138.0116 , prob =0.9996

5.3 Training with Simulated Annealing 109

. . .
I t e r a t i o n #99, Score =0.1031 , k=99,kMax=100 , t =1.16E−4,prob =2.8776E
−7

I t e r a t i o n #100, Score =0.1031 , k=100 ,kMax=100 , t =9.9999E−5,prob
=2.1443E−70

Fina l s c o r e : 0 .1031
[0 .22222222222222213 , 0 .6249999999999999 , 0 .06779661016949151 ,

0 .04166666666666667] −> I r i s −se tosa , I d e a l : I r i s −s e t o s a
[0 .1666666666666668 , 0 .41666666666666663 , 0 .06779661016949151 ,

0 .04166666666666667] −> I r i s −se tosa , I d e a l : I r i s −s e t o s a
. . .
[0 .6666666666666666 , 0 .41666666666666663 , 0 .711864406779661 ,

0 .9166666666666666] −> I r i s −v i r g i n i c a , I d e a l : I r i s −v i r g i n i c a
[0 .5555555555555555 , 0 .20833333333333331 , 0 .6779661016949152 ,

0 . 7 5] −> I r i s −v i r g i n i c a , I d e a l : I r i s −v i r g i n i c a
[0 .611111111111111 , 0 .41666666666666663 , 0 .711864406779661 ,

0 .7916666666666666] −> I r i s −v i r g i n i c a , I d e a l : I r i s −v i r g i n i c a
[0 .5277777777777778 , 0 .5833333333333333 , 0 .7457627118644068 ,

0 .9166666666666666] −> I r i s −v i r g i n i c a , I d e a l : I r i s −v i r g i n i c a
[0 .44444444444444453 , 0 .41666666666666663 , 0 .6949152542372881 ,

0 .7083333333333334] −> I r i s −v i r g i n i c a , I d e a l : I r i s −v i r g i n i c a
[1 .178018083703488 , 16.66575553359515 , −0.6101619300462806 ,

−3.9894606091020965 , 13.989551673146842 , −8.87489712462323 ,
8 .027287801488647 , −4.615098285283519 , 6 .426489182215509 ,
−1.4672962642199618 , 4 .136699061975335 , 4 .20036115439746 ,
0 .9052469139543605 , −2.8923515248132063 , −4.733219252086315 ,
18 .6497884912826 , 2 .5459600552510895 , −5.618872440836617 ,
4 .638827606092005 , 0 .8887726364890928 , 8 .730809901357286 ,
−6.4963370793479545 , −6.4003385330186795 , −11.820235441582424 ,
−3.29494170904095 , −1.5320936828139837 , 0 .1094081633203249 ,

0 .26353076268018827 , 3 .935780218339343 , 0 .8881280604852664 ,
−5.048729642423418 , 8 .288232057956957 , −14.686080237582006 ,
3 .058305829324875 , −2.4144038920292608 , 21.76633883966702 ,
12.151853576801647 , −3.6372061664901416 , 6 .28253174293219 ,
−4.209863472970308 , 0 .8614258660906541 , −9.382012074551428 ,
−3.346419915864691 , −0.6326977049713416 , 2 .1391118323593203 ,
0 .44832732990560714 , 6 .853600355726914 , 2 .8210824313745957 ,
1 .3901883615737192 , −5.962068350552335 , 0 .502596306917136]

The initial random neural network starts out with a high multi-class log loss
score of 30. As the training progresses, this value falls until it is low enough
for training to stop. For this example, the training stops as soon as the error

110 Training & Evaluation

falls below 10. To determine a good stopping point for the error, you should
evaluate how well the network is performing for your intended use. A log loss
below 0.5 is often in the acceptable range; however, you might not be able to
achieve this score with all data sets.

The following URL shows an example of a neural network trained with
simulated annealing:

http://www.heatonresearch.com/aifh/vol3/anneal_roc.html

5.4 Chapter Summary

Objective functions can evaluate neural networks. They simply return a num-
ber that indicates the success of the neural network. Regression neural net-
works will frequently utilize mean squared error (MSE). Classification neural
networks will typically use a log loss or multi-class log loss function. These
neural networks create custom objective functions.

Simulated annealing can optimize the neural network. You can utilize
any of the optimization algorithms presented in Volumes 1 and 2 of Artificial
Intelligence for Humans. In fact, you can optimize any vector in this way
because the optimization algorithms are not tied to a neural network. In the
next chapter, you will see several training methods designed specifically for
neural networks. While these specialized training algorithms are often more
efficient, they require objective functions that have a derivative.

http://www.heatonresearch.com/aifh/vol3/anneal_roc.html

5.4 Chapter Summary 111

113

Chapter 6

Backpropagation Training

• Gradient Calculation

• Backpropagation

• Learning Rate & Momentum

• Stochastic Gradient Descent

Backpropagation is one of the most common methods for training a neural
network. Rumelhart, Hinton, & Williams (1986) introduced backpropagation,
and it remains popular today. Programmers frequently train deep neural net-
works with backpropagation because it scales really well when run on graphical
processing units (GPUs). To understand this algorithm for neural networks,
we must examine how to train it as well as how it processes a pattern.

Classic backpropagation has been extended and modified to give rise to
many different training algorithms. In this chapter, we will discuss the most
commonly used training algorithms for neural networks. We begin with classic
backpropagation and then end the chapter with stochastic gradient descent
(SGD).

114 Backpropagation Training

6.1 Understanding Gradients

Backpropagation is a type of gradient descent, and many texts will use these
two terms interchangeably. Gradient descent refers to the calculation of a gra-
dient on each weight in the neural network for each training element. Because
the neural network will not output the expected value for a training element,
the gradient of each weight will give you an indication about how to modify
each weight to achieve the expected output. If the neural network did output
exactly what was expected, the gradient for each weight would be 0, indicating
that no change to the weight is necessary.

The gradient is the derivative of the error function at the weight’s current
value. The error function measures the distance of the neural network’s output
from the expected output. In fact, we can use gradient descent, a process in
which each weight’s gradient value can reach even lower values of the error
function.

With respect to the error function, the gradient is essentially the partial
derivative of each weight in the neural network. Each weight has a gradient
that is the slope of the error function. A weight is a connection between two
neurons. Calculating the gradient of the error function allows the training
method to determine whether it should increase or decrease the weight. In
turn, this determination will decrease the error of the neural network. The
error is the difference between the expected output and actual output of the
neural network. Many different training methods called propagation-training
algorithms utilize gradients. In all of them, the sign of the gradient tells the
neural network the following information:

• Zero gradient - The weight is not contributing to the error of the neural
network.

• Negative gradient - The weight should be increased to achieve a lower
error.

• Positive gradient - The weight should be decreased to achieve a lower
error.

Because many algorithms depend on gradient calculation, we will begin with
an analysis of this process.

6.1 Understanding Gradients 115

6.1.1 What is a Gradient

First of all, let’s examine the gradient. Essentially, training is a search for the
set of weights that will cause the neural network to have the lowest error for a
training set. If we had an infinite amount of computation resources, we would
simply try every possible combination of weights to determine the one that
provided the lowest error during the training.

Because we do not have unlimited computing resources, we have to use
some sort of shortcut to prevent the need to examine every possible weight
combination. These training methods utilize clever techniques to avoid per-
forming a brute-force search of all weight values. This type of exhaustive search
would be impossible because even small networks have an infinite number of
weight combinations.

Consider a chart that shows the error of a neural network for each possible
weight. Figure 6.1 is a graph that demonstrates the error for a single weight:

Figure 6.1: Gradient of a Single Weight

116 Backpropagation Training

Looking at this chart, you can easily see that the optimal weight is the
location where the line has the lowest y-value. The problem is that we see
only the error for the current value of the weight; we do not see the entire
graph because that process would require an exhaustive search. However, we
can determine the slope of the error curve at a particular weight. In the
above chart, we see the slope of the error curve at 1.5. The straight line that
barely touches the error curve at 1.5 gives the slope. In this case, the slope,
or gradient, is -0.5622. The negative slope indicates that an increase in the
weight will lower the error.

The gradient is the instantaneous slope of the error function at the specified
weight. The derivative of the error curve at that point gives the gradient. This
line tells us the steepness of the error function at the given weight.

Derivatives are one of the most fundamental concepts in calculus. For the
purposes of this book, you just need to understand that a derivative provides
the slope of a function at a specific point. A training technique and this slope
can give you the information to adjust the weight for a lower error. Using our
working definition of the gradient, we will now show how to calculate it.

6.1.2 Calculating Gradients

We will calculate an individual gradient for each weight. Our focus is not only
the equations but also the applications in actual neural networks with real
numbers. Figure 6.2 shows the neural network that we will use:

6.1 Understanding Gradients 117

Figure 6.2: An XOR Network

Additionally, we use this same neural network in several examples on the
website for this book. In this chapter, we will show several calculations that
demonstrate the training of a neural network. We must use the same starting
weights so that these calculations are consistent. However, the above weights
have no special characteristic; the program generated them randomly.

The aforementioned neural network is a typical three-layer feedforward
network like the ones we have previously studied. The circles indicate neurons.
The lines connecting the circles are the weights. The rectangles in the middle
of the connections give the weight for each connection.

The problem that we now face is calculating the partial derivative for each
of the weights in the neural network. We use a partial derivative when an
equation has more than one variable. Each of the weights is considered a
variable because these weight values will change independently as the neural
network changes. The partial derivatives of each weight simply show each
weight’s independent effect on the error function. This partial derivative is

118 Backpropagation Training

the gradient.
We can calculate each partial derivative with the chain rule of calculus. We

will begin with one training set element. For Figure 6.2 we provide an input
of [1,0] and expect an output of [1]. You can see that we apply the input on
the above figure. The first input neuron has an input value of 1.0, and the
second input neuron has an input value of 0.0.

This input feeds through the network and eventually produces an output.
Chapter 4, “Feedforward Neural Networks,” covers the exact process to calcu-
late the output and sums. Backpropagation has both a forward and backwards
pass. The forward pass occurs when we calculate the output of the neural net-
work. We will calculate the gradients only for this item in the training set.
Other items in the training set will have different gradients. We will discuss
how to combine the gradients for the individual training set element later in
the chapter.

We are now ready to calculate the gradients. The steps involved in calcu-
lating the gradients for each weight are summarized here:

• Calculate the error, based on the ideal of the training set.

• Calculate the node (neuron) delta for the output neurons.

• Calculate the node delta for the interior neurons.

• Calculate individual gradients.

We will discuss these steps in the subsequent sections.

6.2 Calculating Output Node Deltas

Calculating a constant value for every node, or neuron, in the neural network
is the first step. We will start with the output nodes and work our way
backwards through the neural network. The term backpropagation comes
from this process. We initially calculate the errors for the output neurons and
propagate these errors backwards through the neural network.

6.2 Calculating Output Node Deltas 119

The node delta is the value that we will calculate for each node. Layer
delta also describes this value because we can calculate the deltas one layer
at a time. The method for determining the node deltas can differ if you are
calculating for an output or interior node. The output nodes are calculated
first, and they take into account the error function for the neural network.
In this volume, we will examine the quadratic error function and the cross
entropy error function.

6.2.1 Quadratic Error function

Programmers of neural networks frequently use the quadratic error function.
In fact, you can find many examples of the quadratic error function on the
Internet. If you are reading an example program, and it does not mention
a specific error function, the program is probably using the quadratic error
function, also known as the mean squared error (MSE) function discussed in
Chapter 5, “Training and Evaluation.” Equation 6.1 shows the MSE function:

MSE = 1
n

n∑
i=1

(ŷi − yi)2 (6.1)

The above equation compares the neural network’s actual output (y) with
the expected output (y-hat). The variable n contains the number of training
elements times the number of output neurons. MSE handles multiple out-
put neurons as individual cases. Equation 6.2 shows the node delta used in
conjunction with the quadratic error function:

δi = (ŷi − yi)φ′i (6.2)
The quadratic error function is very simple because it takes the difference
between the expected and actual output for the neural network. The Greek
letter φ (phi-prime) represents the derivative of the activation function.

120 Backpropagation Training

6.2.2 Cross Entropy Error Function

The quadratic error function can sometimes take a long time to properly adjust
the weight. Equation 6.3 shows the cross entropy error function:

CE = − 1
n

∑
x

[y ln a+ (1− y) ln (1− a)] (6.3)

The node delta calculation for the cross entropy error turns out to be much
less complex than the MSE, as seen in Equation 6.4.

δi = ŷi − yi (6.4)
The cross entropy error function will typically better results than the quadratic
it will create a much steeper gradient for errors. You should always use the
cross entropy error function.

6.3 Calculating Remaining Node Deltas

Now that the output node delta has been calculated according to the appro-
priate error function, we can calculate the node deltas for the interior nodes,
as demonstrated by Equation 6.5:

δi = φ′i
∑
k

wkiδk (6.5)

We will calculate the node delta for all hidden and non-bias neurons, but we
do not need to calculate the node delta for the input and bias neurons. Even
though we can easily calculate the node delta for input and bias neurons with
Equation 6.5, gradient calculation does not require these values. As you will
soon see, gradient calculation for a weight only considers the neuron to which
the weight is connected. Bias and input neurons are only the beginning point
for a connection; they are never the end point.

6.4 Derivatives of the Activation Functions 121

If you would like to see the gradient calculation process, several JavaScript
examples will show the individual calculations. These examples can be found
at the following URL:

http://www.heatonresearch.com/aifh/vol3/

6.4 Derivatives of the Activation Functions

The backpropagation process requires the derivatives of the activation func-
tions, and they often determine how the backpropagation process will perform.
Most modern deep neural networks use the linear, softmax, and ReLU acti-
vation functions. We will also examine the derivatives of the sigmoid and
hyperbolic tangent activation functions so that we can see why the ReLU
activation function performs so well.

6.4.1 Derivative of the Linear Activation Function

The linear activation function is barely an activation function at all because it
simply returns whatever value it is given. For this reason, the linear activation
function is sometimes called the identity activation function. The derivative
of this function is 1, as demonstrated by Equation 6.6:

φ′(x) = 1 (6.6)
The Greek letter φ (phi) represents the activation function, as in previous
chapters. However, the apostrophe just above and to the right of φ (phi)
means that we are using the derivative of the activation function. This is one
of several ways that a derivative is expressed in a mathematical form.

6.4.2 Derivative of the Softmax Activation Function

In this volume, the softmax activation function, along with the linear acti-
vation function, is used only on the output layer of the neural networks. As
mentioned in Chapter 1, “Neural Network Basics,” the softmax activation

http://www.heatonresearch.com/aifh/vol3/

122 Backpropagation Training

function is different from the other activation functions in that its value is de-
pendent on the other output neurons, not just on the output neuron currently
being calculated. For convenience, the softmax activation function is repeated
in Equation 6.7:

φi = ezi∑
j∈group

ezj
(6.7)

The z vector represents the output from all output neurons. Equation 6.8
shows the derivative of this activation function:

∂φi
∂zi

= φi(1− φi) (6.8)

We used slightly different notation for the above derivative. The ratio, with
the cursive-stylized “d” symbol means a partial derivative, which occurs when
you differentiate an equation with multiple variables. To take a partial deriva-
tive, you differentiate the equation relative to one variable, holding all others
constant. The top “d” tells you what function you are differentiating. In this
case, it is the activation function φ (phi). The bottom “d” denotes the respec-
tive differentiation of the partial derivative. In this case, we are calculating the
output of the neuron. All other variables are treated as constant. A derivative
is the instantaneous rate of change–only one thing can change at once.

You will not use the derivative of the linear or softmax activation functions
to calculate the gradients of the neural network if you use the cross entropy
error function. You should use the linear and softmax activation functions
only at the output layer of a neural network. Therefore, we do not need to
worry about their derivatives for the interior nodes. For the output nodes
with cross entropy, the derivative of both linear and softmax is always 1. As a
result, you will never use the linear or softmax derivatives for interior nodes.

6.4.3 Derivative of the Sigmoid Activation Function

Equation 6.9 shows the derivative of the sigmoid activation function:

6.4 Derivatives of the Activation Functions 123

φ′(x) = φ(x)(1− φ(x)) (6.9)
Machine learning frequently utilizes the sigmoid function represented in the
above equation. We derived the formula through algebraic manipulation of
the sigmoid derivative in order to use the sigmoid activation function in its
own derivative. For computational efficiency, the Greek letter φ (phi) in the
above activation function represents the sigmoid function. During the feed-
forward pass, we calculated the value of the sigmoid function. Retaining the
sigmoid function makes the sigmoid derivative a simple calculation. If you are
interested in how to obtain Equation 6.9, you can refer to the following URL:

http://www.heatonresearch.com/aifh/vol3/deriv_sigmoid.html

6.4.4 Derivative of the Hyperbolic Tangent Activation
Function

Equation 6.10 shows the derivative of the hyperbolic tangent activation func-
tion:

φ′(x) = 1.0− φ2(x) (6.10)
We recommend that you always use the hyperbolic tangent activation function
instead of the sigmoid activation function.

6.4.5 Derivative of the ReLU Activation Function

Equation 6.11 shows the derivative of the ReLU function:

dy

dx
φ(x) =

1 x > 0
0 x ≤ 0

(6.11)

http://www.heatonresearch.com/aifh/vol3/deriv_sigmoid.html

124 Backpropagation Training

Strictly speaking, the ReLU function does not have a derivative at 0. How-
ever, because of convention, the gradient of 0 is substituted when x is 0. Deep
neural networks with sigmoid and hyperbolic tangent activation functions can
be difficult to train using backpropagation. Several factors cause this difficulty.
The vanishing gradient problem is one the most common causes. Figure 6.3
shows the hyperbolic tangent function, along with its gradient/derivative:

Figure 6.3: Tanh Activation Function & Derivative

Figure 6.3 shows that as the hyperbolic tangent (blue line) saturates to -1
and 1, the derivative of the hyperbolic tangent (red line) vanishes to 0. The
sigmoid and hyperbolic tangent activation functions both have this problem,
but ReLU doesn’t. Figure 6.4 shows the same graph for the sigmoid activation
function and its vanishing derivative:

6.5 Applying Backpropagation 125

Figure 6.4: Tanh Activation Function & Derivative

6.5 Applying Backpropagation

Backpropagation is a simple training method that adjusts the weights of the
neural network with its calculated gradients. This method is a form of gra-
dient descent since we are descending the gradients to lower values. As the
program adjusts these weights, the neural network should produce more de-
sirable output. The global error of the neural network should fall as it trains.
Before we can examine the backpropagation weight update process, we must
examine two different ways to update the weights.

6.5.1 Batch and Online Training

We have already shown how to calculate the gradients for an individual training
set element. Earlier in this chapter, we calculated the gradients for a case in
which we gave the neural network an input of [1,0] and expected an output of

126 Backpropagation Training

[1]. This result is acceptable for a single training set element. However, most
training sets have many elements. Therefore, we can handle multiple training
set elements through two approaches called online and batch training.

Online training implies that you modify the weights after every training
set element. Using the gradients obtained in the first training set element,
you calculate and apply a change to the weights. Training progresses to the
next training set element and also calculates an update to the neural network.
This training continues until you have used every training set element. At this
point, one iteration, or epoch, of training has completed.

Batch training also utilizes all the training set elements. However, we have
not updated the weights. Instead, we sum the gradients for each training set
element. Once we have summed the training set elements, we can update the
neural network weights. At this point, the iteration is complete.

Sometimes, we can set a batch size. For example, you might have a train-
ing set size of 10,000 elements. You might choose to update the weights of
the neural network every 1,000 elements, thereby causing the neural network
weights to update ten times during the training iteration.

Online training was the original method for backpropagation. If you would
like to see the calculations for the batch version of this program, refer to the
following online example:

http://www.heatonresearch.com/aifh/vol3/xor_batch.html

6.5.2 Stochastic Gradient Descent

Batch and online training are not the only choices for backpropagation. Stochas-
tic gradient descent (SGD) is the most popular of the backpropagation algo-
rithms. SGD can work in either batch or online mode. Online stochastic
gradient descent simply selects a training set element at random and then
calculates the gradient and performs a weight update. This process contin-
ues until the error reaches an acceptable level. Choosing random training
set elements will usually converge to an acceptable weight faster than looping
through the entire training set for each iteration.

Batch stochastic gradient descent works by choosing a batch size. For each
iteration, a mini-batch is chosen by randomly selecting a number of training set

http://www.heatonresearch.com/aifh/vol3/xor_batch.html

6.5 Applying Backpropagation 127

elements up to the chosen batch size. The gradients from the mini-batch are
summed just as regular backpropagation batch updating. This update is very
similar to regular batch updating except that the mini-batches are randomly
chosen each time they are needed. The iterations typically process a single
batch in SGD. Batches are usually much smaller than the entire training set
size. A common choice for the batch size is 600.

6.5.3 Backpropagation Weight Update

We are now ready to update the weights. As previously mentioned, we will
treat the weights and gradients as a single-dimensional array. Given these two
arrays, we are ready to calculate the weight update for an iteration of back-
propagation training. Equation 6.6 shows the formula to update the weights
for backpropagation:

∆w(t) = −ε ∂E
∂w(t)

+ α∆w(t−1) (6.12)

The above equation calculates the change in weight for each element in the
weight array. You will also notice that the above equation calls for the weight
change from the previous iteration. You must keep these values in another
array. As previously mentioned, the direction of the weight update is inversely
related to the sign of the gradient–a positive gradient should cause a weight
decrease, and vice versa. Because of this inverse relationship Equation 6.12
begins with a negative.

The above equation calculates the weight delta as the product of the gradi-
ent and the learning rate (represented by ε, epsilon). Furthermore, we add the
product of the previous weight change and the momentum value (represented
by α, alpha). The learning rate and momentum are two parameters that we
must provide to the backpropagation algorithm. Choosing values for learning
rate and momentum is very important to the performance of the training.
Unfortunately, the process for determining learning rate and momentum is
mostly trial and error.

The learning rate scales the gradient and can slow down or speed up learn-
ing. A learning rate below 0 will slow down learning. For example, a learning
rate of 0.5 would decrease every gradient by 50%. A learning rate above 1.0

128 Backpropagation Training

would accelerate training. In reality, the learning rate is almost always below
1.

Choosing a learning rate that is too high will cause your neural network
to fail to converge and have a high global error that simply bounces around
instead of converging to a low value. Choosing a learning rate that is too low
will cause the neural network to take a great deal of time to converge.

Like the learning rate, the momentum is also a scaling factor. Although
it is optional, momentum determines the percent of the previous iteration’s
weight change that should be applied to the iteration. If you do not want to
use momentum, just specify a value of 0.

Momentum is a technique added to backpropagation that helps the training
escape local minima, which are low points on the error graph that are not the
true global minimum. Backpropagation has a tendency to find its way into
a local minimum and not find its way back out again. This process causes
the training to converge to a higher undesirable error. Momentum gives the
neural network some force in its current direction and may allow it to break
through a local minimum.

6.5.4 Choosing Learning Rate and Momentum

Momentum and learning rate contribute to the success of the training, but
they are not actually part of the neural network. Once training is complete,
the trained weights remain and no longer utilize momentum or the learning
rate. They are essentially part of the temporary scaffolding that creates a
trained neural network. Choosing the correct momentum and learning rate
can impact the effectiveness of your training.

The learning rate affects the speed at which your neural network trains.
Decreasing the learning rate makes the training more meticulous. Higher learn-
ing rates might skip past optimal weight settings. A lower training rate will
always produce better results. However, lowering the training rate can greatly
increase runtime. Lowering the learning rate as the network trains can be an
effective technique.

You can use the momentum to combat local minima. If you find the neural
network stagnating, a higher momentum value might push the training past

6.5 Applying Backpropagation 129

the local minimum that it encountered. Ultimately, choosing good values for
momentum and learning rate is a process of trial and error. You can vary both
as training progresses. Momentum is often set to 0.9 and the learning rate to
0.1 or lower.

6.5.5 Nesterov Momentum

The stochastic gradient descent (SGD) algorithm can sometimes produce er-
ratic results because of the randomness introduced by the mini-batches. The
weights might get a very beneficial update in one iteration, but a poor choice
of training elements can undo it in the next mini-batch. Therefore, momentum
is a resourceful tool that can mitigate this sort of erratic training result.

Nesterov momentum is a relatively new application of a technique invented
by Yu Nesterov in 1983 and updated in his book, Introductory Lectures on
Convex Optimization: A Basic Course (Nesterov, 2003). This technique is
occasionally referred to as Nesterov’s accelerated gradient descent. Although
a full mathematical explanation of Nesterov momentum is beyond the scope
of this book, we will present it for the weights in sufficient detail so you can
implement it. This book’s examples, including those for the online JavaScript,
contain an implementation of Nesterov momentum. Additionally, the book’s
website contains Javascript that output example calculations for the weight
updates of Nesterov momentum.

Equation 6.13 calculates a partial weight update based on both the learning
rate (ε, epsilon) and momentum (α, alpha):

n0 = 0 , nt = αnt−1 + ε
∂E

∂wt
(6.13)

The current iteration is signified by t, and the previous iteration by t-1. This
partial weight update is called n and initially starts out at 0. Subsequent
calculations of the partial weight update are based on the previous value of
the partial weight update. The partial derivative in the above equation is
the gradient of the error function at the current weight. Equation 6.14 shows
the Nesterov momentum update that replaces the standard backpropagation
weight update shown earlier in Equation 6.12:

130 Backpropagation Training

∆wt = αnt−1 − (1 + α)nt (6.14)
The above weight change is calculated as an amplification of the partial weight
change. The delta weight shown in the above equation is added to the current
weight. Stochastic gradient descent (SGD) with Nesterov momentum is one
of the most effective training algorithms for deep learning.

6.6 Chapter Summary

This chapter introduced classic backpropagation as well as stochastic gradient
descent (SGD). These methods are all based on gradient descent. In other
words, they optimized individual weights with derivatives. For a given weight
value, the derivative gave the program the slope of the error function. The
slope allowed the program to determine how to change the weight value. Each
training algorithm interprets this slope, or gradient, differently.

Despite the fact that backpropagation is one of the oldest training algo-
rithms, it remains one of the most popular ones. Backpropagation simply adds
the gradient to the weight. A negative gradient will increase the weight, and a
positive gradient will decrease the weight. We scale the weight by the learning
rate in order to prevent the weights from changing too rapidly. A learning
rate of 0.5 would mean to add half of the gradient to the weight, whereas a
learning rate of 2.0 would mean to add twice the gradient.

There are a number of variants to the backpropagation algorithm. Some
of these, such as resilient propagation, are somewhat popular. The next chap-
ter will introduce some backpropagation variants. Though these variants are
useful to know, stochastic gradient descent (SGD) remains the most common
deep learning training algorithm.

6.6 Chapter Summary 131

133

Chapter 7

Other Propagation Training

• Resilient Propagation

• Levenberg-Marquardt

• Hessian and Jacobean Matrices

The backpropagation algorithm has influenced many training algorithms, such
as the stochastic gradient descent (SGD), introduced in the previous chapter.
For most purposes, the SGD algorithm, along with Nesterov momentum, is
a good choice for a training algorithm. However, other options exist. In
this chapter, we examine two popular algorithms inspired by elements from
backpropagation.

To make use of these two algorithms, you do not need to understand ev-
ery detail of their implementation. Essentially, both algorithms accomplish
the same objective as backpropagation. Thus, you can substitute them for
backpropagation or stochastic gradient descent (SGD) in most neural network
frameworks. If you find SGD is not converging, you can switch to resilient
propagation (RPROP) or Levenberg-Marquardt algorithm in order to exper-
iment. However, you can skip this chapter if you are not interested in the
actual implementation details of either algorithm.

134 Other Propagation Training

7.1 Resilient Propagation

RPROP functions very much like backpropagation. Both backpropagation
and RPROP must first calculate the gradients for the weights of the neural
network. However, backpropagation and RPROP differ in the way they use
the gradients. Reidmiller & Braun (1993) introduced the RPROP algorithm.

One important feature of the RPROP algorithm is that it has no necessary
training parameters. When you utilize backpropagation, you must specify the
learning rate and momentum. These two parameters can greatly impact the
effectiveness of your training. Although RPROP does include a few training
parameters, you can almost always leave them at their default.

The RPROP protocol has several variants. Some of the variants are listed
below:

• RPROP+

• RPROP-

• iRPROP+

• iRPROP-

We will focus on classic RPROP, as described by Reidmiller & Braun (1994).
The other four variants described above are relatively minor adaptations of
classic RPROP. In the next sections, we will describe how to implement the
classic RPROP algorithm.

7.2 RPROP Arguments

As previously mentioned, one advantage RPROP has over backpropagation
is that you don’t need to provide any training arguments in order to use
RPROP. However, this doesn’t mean that RPROP lacks configuration settings.
It simply means that you usually do not need to change the configuration
settings for RPROP from their defaults. However, if you really want to change
them, you can choose among the following configuration settings:

7.2 RPROP Arguments 135

• Initial Update Values

• Maximum Step

As you will see in the next section, RPROP keeps an array of update values
for the weights, which determines how much you will alter each weight. This
change is similar to the learning rate in backpropagation, but it is much better
because the algorithm adjusts the update value of every weight in the neural
network as training progresses. Although some backpropagation algorithms
will vary the learning rate and momentum as learning progresses, most will
use a single learning rate for the entire neural network. Therefore, the RPROP
approach has an advantage over backpropagation algorithms.

We start these update values at the default of 0.1, according to the ini-
tial update values argument. As a general rule, we should never change this
default. However, we can make an exception to this rule if we have already
trained the neural network. In the case of a previously trained neural network,
some of the initial update values are going to be too strong, and the neural
network will regress for many iterations before it can improve. As a result, a
trained neural network may benefit from a much smaller initial update.

Another approach for an already trained neural network is to save the
update values once training stops and use them for the new training. This
method will allow you to resume training without the initial spike in errors
that you would normally see when resuming resilient propagation training.
This approach will only work if you are continuing resilient propagation on an
already trained network. If you were previously training the neural network
with a different training algorithm, then you will be able to restore from an
array of update values.

As training progresses, you will use the gradients to adjust the updates up
and down. The maximum step argument defines the maximum upward step
size that the gradient can take over the update values. The default value for
the maximum step argument is 50. It is unlikely that you will need to change
the value of this argument.

In addition to these arguments, RPROP keeps constants during processing.
These are values that you can never change. The constants are listed as follows:

136 Other Propagation Training

• Delta Minimum (1e-6)

• Negative η (Eta) (0.5)

• Positive -η (Eta) (1.2)

• Zero Tolerance (1e-16)

Delta minimum specifies the minimum value that any of the update values can
reach. If an update value were at 0, it would never be able to increase beyond
0. We will describe negative and positive η (eta) in the next sections.

The zero tolerance defines how closely a number should reach 0 before that
number is equal to 0. In computer programming, it is typically bad practice
to compare a floating-point number to 0 because the number would have to
equal 0 exactly. Rather, you typically see if the absolute value of a number is
below an arbitrarily small number. A sufficiently small number is considered
0.

7.3 Data Structures

You must keep several data structures in memory while you perform RPROP
training. These structures are all arrays of floating-point numbers. They are
summarized here:

• Current Update Values

• Last Weight Change Values

• Current Weight Change Values

• Current Gradient Values

• Previous Gradient Values

You keep the current update values for the training. If you want to resume
training at some point, you must store this update value array. Each weight has

7.4 Understanding RPROP 137

one update value that cannot go below the minimum delta constant. Likewise,
these update values cannot exceed the maximum step argument.

RPROP must keep several values between iterations. You must also track
the last weight delta value. Backpropagation keeps the previous weight delta
for momentum. RPROP uses this delta value in a different way that we will
examine in the next section. You also need the current and previous gradients.
RPROP needs to know when the sign changes from the current gradient to
the previous gradient. This change indicates that you must act on the update
values. We will discuss these actions in the next section.

7.4 Understanding RPROP

In the previous sections, we examined the arguments, constants, and data
structures necessary for RPROP. In this section, we will show you an iteration
of RPROP. When we discussed backpropagation in earlier sections, we men-
tioned the online and batch weight update methods. However, RPROP does
not support online training so all weight updates for RPROP will be performed
in batch mode. As a result, each iteration of RPROP will receive gradients
that are the sum of the individual gradients of each training set. This aspect
is consistent with backpropagation in batch mode.

7.4.1 Determine Sign Change of Gradient

At this point, we have the gradients that are the same as the gradients calcu-
lated by the backpropagation algorithm. Because we use the same process to
obtain gradients in both RPROP and backpropagation, we will not repeat it
here. For the first step, we compare the gradient of the current iteration to
the gradient of the previous iteration. If there is no previous iteration, then
we can assume that the previous gradient was 0.

To determine whether the gradient sign has changed, we will use the sign
(sgn) function. Equation 7.1 defines the sgn function:

138 Other Propagation Training

sgn(x) =

−1 if x < 0,
0 if x = 0,
1 if x > 0.

(7.1)

The sgn function returns the sign of the number provided. If x is less than
0, the result is -1. If x is greater than 0, then the result is 1. If x is equal
to 0, then the result is 0. We usually implement the sgn function to use a
tolerance for 0, since it is nearly impossible for floating-point operations to hit
0 precisely on a computer.

To determine whether the gradient has changed sign, we use Equation 7.2:

c = ∂E

∂wij

(t)
· ∂E
∂wij

(t−1)
(7.2)

Equation 7.2 will result in a constant c. We evaluate this value as negative
or positive or close to 0. A negative value for c indicates that the sign has
changed. A positive value indicates that there is no change in sign for the
gradient. A value near 0 indicates a very small change in sign or almost no
change in sign.

7.4 Understanding RPROP 139

Consider the following situations for these three outcomes:
−1 ∗ 1 = −1 (negat ive , changed from negat ive to p o s i t i v e)
1 ∗ 1 = 1 (p o s i t i v e , no change in s i gn)
1 .0 ∗ 0.000001 = 0.000001 (near zero , almost changed s igns , but

not qu i t e)

Now that we have calculated the constant c, which gives some indication of
sign change, we can calculate the weight change. The next section includes a
discussion of this calculation.

7.4.2 Calculate Weight Change

Now that we have the change in sign of the gradient, we can observe what
happens in each of the three cases mentioned in the previous section. Equation
7.3 summarizes these three cases:

∆w(t)
ij =

−∆(t)

ij , if c > 0
+∆(t)

ij , if c < 0
0 , otherwise

(7.3)

This equation calculates the actual weight change for each iteration. If the
value of c is positive, then the weight change will be equal to the negative of
the weight update value. Similarly, if the value of c is negative, the weight
change will be equal to the positive of the weight update value. Finally, if the
value of c is near 0, there will be no weight change.

140 Other Propagation Training

7.4.3 Modify Update Values

We use the weight update values from the previous section to update the
weights of the neural network. Every weight in the neural network has a
separate weight update value that works much better than the single learning
rate of backpropagation. We modify these weight update values during each
training iteration, as seen in Equation 7.4:

∆(t)
ij =

η+ ·∆(t−1)

ij , if c > 0
η− ·∆(t−1)

ij , if c < 0
∆(t−1)
ij , otherwise

(7.4)

We can modify the weight update values in a way that is very similar to the
changes of the weights. We base these weight update values on the previously
calculated value c, just like the weights.

If the value of c is positive, then we multiply the weight update value by the
value of positive +η (eta). Similarly, if the value of c is negative, we multiply
the weight update value by negative -η (eta). Finally, if the value of c is near
0, then we don’t change the weight update value.

The JavaScript example site for this book has examples of the RPROP
update as well as examples of the previous equations and sample calculations.

7.5 Levenberg-Marquardt Algorithm

The Levenberg-Marquardt algorithm (LMA) is a very efficient training method
for neural networks. In many cases, LMA will outperform RPROP. As a re-
sult, every neural network programmer should consider this training algorithm.
Levenberg (1940) introduced the foundation for the LMA, and Marquardt
(1963) expanded its methods.

LMA is a hybrid algorithm that is based on Newton’s method (GNA) and
on gradient descent (backpropagation). Thus, LMA combines the strengths
of GNA and backpropagation. Although gradient descent is guaranteed to
converge to a local minimum, it is slow. Newton’s method is fast, but it often
fails to converge. By using a damping factor to interpolate between the two,

7.5 Levenberg-Marquardt Algorithm 141

we create a hybrid method. To understand how this hybrid works, we will first
examine Newton’s method. Equation 7.5 shows Newton’s method:

Wmin = W0 −H−1g (7.5)
You will notice several variables in the above equation. The result of the
equation is that you can apply deltas to the weights of the neural network. The
variable H represents the Hessian, which we will discuss in the next section.
The variable g represents the gradients of the neural network. You will also
notice the -1 “exponent” on the variable H, which specifies that we are doing
a matrix decomposition of the variables H and g.

We could easily spend an entire chapter on matrix decomposition. How-
ever, we will simply treat matrix decomposition as a black box atomic operator
for the purposes of this book. Because we will not explain how to calculate
matrix decomposition, we have included a common piece of code taken from
the JAMA package. Many mathematical computer applications have used this
public domain code, adapted from a FORTRAN program. To perform matrix
decomposition, you can use JAMA or another source.

Although several types of matrix decomposition exist, we are going to
use the LU decomposition, which requires a square matrix. This decomposi-
tion works well because the Hessian matrix has the same number of rows as
columns. Every weight in the neural network has a row and column. The LU
decomposition takes the Hessian, which is a matrix of the second derivative
of the partial derivatives of the output of each of the weights. The LU de-
composition solves the Hessian by the gradients, which are the square of the
error of each weight. These gradients are the same as those that we calculated
in Chapter 6, “Backpropagation Training,” except they are squared. Because
the errors are squared, we must use the sum of square error when dealing with
LMA.

Second derivative is an important term to know. It is the derivative of
the first derivative. Recall from Chapter 6, “Backpropagation Training,” that
the derivative of a function is the slope at any point. This slope shows the
direction that the curve is approaching for a local minimum. The second
derivative is also a slope, and it points in a direction to minimize the first
derivative. The goal of Newton’s method, as well as of the LMA, is to reduce
all of the gradients to 0.

142 Other Propagation Training

It’s interesting to note that the goal does not include the error. Newton’s
method and LMA can be oblivious to the error because they try to reduce all
the gradients to 0. In reality, they are not completely oblivious to the error
because they use it to calculate the gradients.

Newton’s method will converge the weights of a neural network to a local
minimum, a local maximum, or a straddle position. We achieve this conver-
gence by minimizing all the gradients (first derivatives) to 0. The derivatives
will be 0 at local minima, maxima, or straddle position. Figure 7.1 shows
these three points:

Figure 7.1: Local Minimum, Straddle and Local Maximum

The algorithm implementation must ensure that local maxima and strad-
dle points are filtered out. The above algorithm works by taking the matrix
decomposition of the Hessian matrix and the gradients. The Hessian matrix
is typically estimated. Several methods exist to estimate the Hessian matrix.
However, if it is inaccurate, it can harm Newton’s method.

LMA enhances Newton’s algorithm to the following formula in Equation
7.6:

Wmin = W0 − (H + λI)−1g (7.6)
In this equation, we add a damping factor multiplied by an identity matrix.
The damping factor is represented by λ (lambda), and I represents the iden-

7.6 Calculation of the Hessian 143

tity matrix, which is a square matrix with all the values at 0 except for a
northwest (NW) line of values at 1. As lambda increases, the Hessian will
be factored out of the above equation. As lambda decreases, the Hessian be-
comes more significant than gradient descent, allowing the training algorithm
to interpolate between gradient descent and Newton’s method. Higher lambda
favors gradient descent; lower lambda favors Newton. A training iteration of
LMA begins with a low lambda and increases it until a desirable outcome is
produced.

7.6 Calculation of the Hessian

The Hessian matrix is a square matrix with rows and columns equal to the
number of weights in the neural network. Each cell in this matrix represents
the second order derivative of the output of the neural network with respect
to a given weight combination. Equation 7.7 shows the Hessian:

H(e) =

∂2e
∂w2

1

∂2e
∂w1 ∂w2

· · · ∂2e
∂w1 ∂wn

∂2e
∂w2 ∂w1

∂2e
∂w2

2
· · · ∂2e

∂w2 ∂wn

...

∂2e
∂wn ∂w1

∂2e
∂wn ∂w2

· · · ∂2e
∂w2

n

(7.7)

It is important to note that the Hessian is symmetrical about the diagonal,
which you can use to enhance performance of the calculation. Equation 7.8
calculates the Hessian by calculating the gradients:

∂E

∂w(i)
= 2(y − t) ∂y

∂w(i)
(7.8)

The second derivative of the above equation becomes an element of the Hessian
matrix. You can use Equation 7.9 to calculate it:

144 Other Propagation Training

∂2E

∂wiwj
= 2

(
∂y

∂wi

∂y

∂wj
+ (y − t) ∂2y

∂wj∂wj

)
(7.9)

If not for the second component, you could easily calculate the above formula.
However, this second component involves the second partial derivative and
that is difficult to calculate. Because the component is not important, you
can actually drop it because its value does not significantly contribute to the
outcome. While the second partial derivative might be important for an in-
dividual training case, its overall contribution is not significant. The second
component of Equation 7.9 is multiplied by the error of that training case. We
assume that the errors in a training set are independent and evenly distributed
about 0. On an entire training set, they should essentially cancel each other
out. Because we are not using all components of the second derivative, we
have only an approximation of the Hessian, which is sufficient to get a good
training result.

Equation 7.10 uses the approximation, resulting in the following:

∂2E

∂wiwj
= 2

(
∂y

∂wi

∂y

∂wj

)
(7.10)

While the above equation is only an approximation of the true Hessian, the
simplification of the algorithm to calculate the second derivative is well worth
the loss in accuracy. In fact, an increase in λ (lambda) will account for the
loss of accuracy.

To calculate the Hessian and gradients, we must determine the partial first
derivatives of the output of the neural network. Once we have these partial
first derivatives, the above equations allow us to easily calculate the Hessian
and gradients.

Calculation of the first derivatives of the output of the neural network is
very similar to the process that we used to calculate the gradients for back-
propagation. The main difference is that we take the derivative of the output.
In standard backpropagation, we take the derivative of the error function. We
will not review the entire backpropagation process here. Chapter 6, “Back-
propagation Training,” covers backpropagation and gradient calculation.

7.7 LMA with Multiple Outputs 145

7.7 LMA with Multiple Outputs

Some implementations of LMA support only a single-output neuron because
LMA has roots in mathematical function approximation. In mathematics,
functions typically return only a single value. As a result, many books and
papers do not contain discussions of multiple-output LMA. However, you can
use LMA with multiple outputs.

Support for multiple-output neurons involves summing each cell of the
Hessian as you calculate the additional output neurons. The process works
as if you calculated a separate Hessian matrix for each output neuron and
then summed the Hessian matrices together. Encog (Heaton, 2015) uses this
approach, and it leads to fast convergence times.

You need to realize that you will not use every connection with multiple
outputs. You will need to calculate independently an update for the weight
of each output neuron. Depending on the output neuron you are currently
calculating, there will be unused connections for the other output neurons.
Therefore, you must set the partial derivative for each of these unused connec-
tions to 0 when you are calculating the other output neurons.

For example, consider a neural network that has two output neurons and
three hidden neurons. Each of these two output neurons would have a total
of four connections from the hidden layer. Three connections result from the
three hidden neurons, and a fourth comes from the bias neuron. This segment
of the neural network would resemble Figure 7.2:

Figure 7.2: Calculating Output Neuron 1

146 Other Propagation Training

Here we are calculating output neuron 1. Notice that output neuron 2 has
four connections that must have their partial derivatives treated as 0. Because
we are calculating output 1 as the current neuron, it only uses its normal
partial derivatives. You can repeat this process for each output neuron.

7.8 Overview of the LMA Process

So far, we have examined only the math behind LMA. To be effective, LMA
must be part of an algorithm. The following steps summarize the LMA process:

1 . Ca l cu la te the f i r s t d e r i v a t i v e o f output o f the neura l network
with r e s p e c t to every weight .

2 . Ca l cu la te the Hess ian .
3 . Ca l cu la te the g rad i en t s o f the e r r o r (ESS) with r e s p e c t to

every weight .
4 . E i ther s e t lambda to a low value (f i r s t i t e r a t i o n) or the

lambda o f the prev ious i t e r a t i o n .
5 . Save the weights o f the neura l network .
6 . Ca l cu la te de l t a weight based on the lambda , g rad i ent s , and

Hess ian .
7 . Apply the d e l t a s to the weights and eva luate e r r o r .
8 . I f e r r o r has improved , end the i t e r a t i o n .
9 . I f e r r o r has not improved , i n c r e a s e lambda (up to a max lambda)

, r e s t o r e the weights , and go back to step 6 .

As you can see, the process for LMA revolves around setting the lambda value
low and then slowly increasing it if the error rate does not improve. You must
save the weights at each change in lambda so that you can restore them if the
error does not improve.

7.9 Chapter Summary

Resilient propagation (RPROP) solves two limitations of simple backpropaga-
tion. First, the program assigns each weight a separate learning rate, allowing
the weights to learn at different speeds. Secondly, RPROP recognizes that
while the gradient’s sign is a great indicator of the direction to move the weight,

7.9 Chapter Summary 147

the size of the gradient does not indicate how far to move. Additionally, while
the programmer must determine an appropriate learning rate and momentum
for backpropagation, RPROP automatically sets similar arguments.

Genetic algorithms (GAs) are another means of training neural networks.
There is an entire family of neural networks that use GAs to evolve every
aspect of the neural network, from weights to the overall structure. This family
includes the NEAT, CPPN and HyperNEAT neural networks that we will
discuss in the next chapter. The GA used by NEAT, CPPN and HyperNEAT
is not just another training algorithm because these neural networks introduce
a new architecture based on the feedforward neural networks examined so far
in this book.

149

Chapter 8

NEAT, CPPN & HyperNEAT

• NEAT

• Genetic Algorithms

• CPPN

• HyperNEAT

In this chapter, we discuss three closely related neural network technologies:
NEAT, CPPN and HyperNEAT. Kenneth Stanley’s EPLEX group at the Uni-
versity of Central Florida conducts extensive research for all three technologies.
Information about their current research can be found at the following URL:

http://eplex.cs.ucf.edu/
NeuroEvolution of Augmenting Topologies (NEAT) is an algorithm that

evolves neural network structures with genetic algorithms. The composi-
tional pattern-producing network (CPPN) is a type of evolved neural network
that can create other structures, such as images or other neural networks.
Hypercube-based NEAT, or HyperNEAT, a type of CPPN, also evolves other
neural networks. Once HyperNEAT train the networks, they can easily handle
much higher resolutions of their dimensions.

Many different frameworks support NEAT and HyperNEAT. For Java and
C#, we recommend our own Encog implementation, which can be found at
the following URL:

http://eplex.cs.ucf.edu/

150 NEAT, CPPN & HyperNEAT

http://www.encog.org
You can find a complete list of NEAT implementations at Kenneth Stan-

ley’s website:
http://www.cs.ucf.edu/˜kstanley/neat.html
Kenneth Stanley’s website also includes a complete list of HyperNEAT

implementations:
http://eplex.cs.ucf.edu/hyperNEATpage/
For the remainder of this chapter, we will explore each of these three net-

work types.

8.1 NEAT Networks

NEAT is a neural network structure developed by Stanley and Miikkulainen
(2002). NEAT optimizes both the structure and weights of a neural network
with a genetic algorithm (GA). The input and output of a NEAT neural net-
work are identical to a typical feedforward neural network, as seen in previous
chapters of this book.

A NEAT network starts out with only bias neurons, input neurons, and
output neurons. Generally, none of the neurons have connections at the outset.
Of course, a completely unconnected network is useless. NEAT makes no
assumptions about whether certain input neurons are actually needed. An
unneeded input is said to be statistically independent of the output. NEAT
will often discover this independence by never evolving optimal genomes to
connect to that statistically independent input neuron.

Another important difference between a NEAT network and an ordinary
feedforward neural network is that other than the input and output layers,
NEAT networks do not have clearly defined hidden layers. However, the hid-
den neurons do not organize themselves into clearly delineated layers. One
similarity between NEAT and feedforward networks is that they both use a
sigmoid activation function. Figure 8.1 shows an evolved NEAT network:

http://www.encog.org
http://www.cs.ucf.edu/~kstanley/neat.html
http://eplex.cs.ucf.edu/hyperNEATpage/

8.1 NEAT Networks 151

Figure 8.1: NEAT Network

Input 2 in the above image never formed any connections because the
evolutionary process determined that input 2 was unnecessary. A recurrent
connection also exists between hidden 3 and hidden 2. Hidden 4 has a recurrent
connection to itself. Overall, you will note that a NEAT network lacks a clear
delineation of layers.

152 NEAT, CPPN & HyperNEAT

You can calculate a NEAT network in exactly the same way as you do
for a regular weighted feedforward network. You can manage the recurrent
connections by running the NEAT network multiple times. This works by
having the recurrent connection input start at 0 and update them each type
you cycle through the NEAT network. Additionally, you must define a hyper-
parameter to specify the number of times to calculate the NEAT network.
Figure 8.2 shows recurrent link calculation when a NEAT network is instructed
to cycle three times to calculate recurrent connections:

Figure 8.2: Cycling to Calculate Recurrences

The above diagram shows the outputs from each neuron, over each connec-
tion, for three cycles. The dashed lines indicate the additional connections.
For simplicity, the diagram doesn’t have the weights. The purpose of Figure
8.2 is to show that the recurrent output stays one cycle behind.

For the first cycle, the recurrent connection provided a 0 to the first neuron
because neurons are calculated left to right. The first cycle has no value for
the recurrent connection. For the second cycle, the recurrent connection now
has the output 0.3, which the first cycle provided. Cycle 3 follows the same
pattern, taking the 0.5 output from cycle 2 as the recurrent connection’s out-
put. Since there would be other neurons in the calculation, we have contrived
these values, which the dashed arrows show at the bottom. However, Figure
8.2 does illustrate that the recurrent connections are cycled through previous
cycles.

8.1 NEAT Networks 153

NEAT networks extensively use genetic algorithms, which we examined
in Artificial Intelligence for Humans, Volume 2: Nature-Inspired Algorithms.
Although you do not need to understand completely genetic algorithms to
follow the discussion of them in this chapter, you can refer to Volume 2, as
needed.

NEAT uses a typical genetic algorithm that includes:

• Mutation - The program chooses one fit individual to create a new
individual that has a random change from its parent.

• Crossover - The program chooses two fit individuals to create a new
individual that has a random sampling of elements from both parents.

All genetic algorithms engage the mutation and crossover genetic operators
with a population of individual solutions. Mutation and crossover choose with
greater probability the solutions that receive higher scores from an objective
function. We explore mutation and crossover for NEAT networks in the next
two sections.

8.1.1 NEAT Mutation

NEAT mutation consists of several mutation operations that can be performed
on the parent genome. We discuss these operations here:

• Add a neuron: By selecting a random link, we can add a neuron. A
new neuron and two links replace this random link. The new neuron
effectively splits the link. The program selects the weights of each of
the two new links to provide nearly the same effective output as the link
being replaced.

• Add a link: The program chooses a source and destination, or two
random neurons. The new link will be between these two neurons. Bias
neurons can never be a destination. Output neurons cannot be a source.
There will never be more than two links in the same direction between
the same two neurons.

154 NEAT, CPPN & HyperNEAT

• Remove a link: Links can be randomly selected for removal. If there
are no remaining links interacting with them, you can remove the hidden
neurons, which are neurons that are not input, output, or the single bias
neuron.

• Perturb a weight: You can choose a random link. Then multiply its
weight by a number from a normal random distribution with a gamma
of 1 or lower. Smaller random numbers will usually cause a quicker
convergence. A gamma value of 1 or lower will specify that a single
standard deviation will sample a random number of 1 or lower.

You can increase the probability of the mutation so that the weight perturba-
tion occurs more frequently, thereby allowing fit genomes to vary their weights
and further adapt through their children. The structural mutations happen
with much less frequency. You can adjust the exact frequency of each operation
with most NEAT implementations.

8.1.2 NEAT Crossover

NEAT crossover is more complex than many genetic algorithms because the
NEAT genome is an encoding of the neurons and connections that comprise an
individual genome. Most genetic algorithms assume that the number of genes
is consistent across all genomes in the population. In fact, child genomes in
NEAT that result from both mutation and crossover may have a different num-
ber of genes than their parents. Managing this number discrepancy requires
some ingenuity when you implement the NEAT crossover operation.

NEAT keeps a database of all the changes made to a genome through
mutation. These changes are called innovations, and they exist in order to
implement mutations. Each time an innovation is added, it is given an ID.
These IDs will also be used to order the innovations. We will see that it is
important to select the innovation with the lower ID when choosing between
two innovations.

It is important to realize that the relationship between innovations and
mutations is not one to one. It can take several innovations to achieve one
mutation. The only two types of innovation are creating a neuron and a link

8.1 NEAT Networks 155

between two neurons. One mutation might result from multiple innovations.
Additionally, a mutation might not have any innovations. Only mutations that
add to the structure of the network will generate innovations. The following
list summarizes the innovations that the previously mentioned mutation types
could potentially create.

• Add a neuron: One new neuron innovation and two new link innova-
tions

• Add a link: One new link innovation

• Remove a link: No innovations

• Perturb a weight: No innovations

You also need to note that NEAT will not recreate innovation records if you
have already attempted this type of innovation. Furthermore, innovations
do not contain any weight information; innovations only contain structural
information.

Crossover for two genomes occurs by considering the innovations, and this
trait allows NEAT to ensure that all prerequisite innovations are also present.
A naïve crossover, such as those that many genetic algorithms use, would
potentially combine links with nonexistent neurons. Listing 8.1 shows the
entire NEAT crossover function in pseudocode:

Listing 8.1: NEAT Crossover
def n e a t c r o s s o v e r (rnd ,mom, dad) :
Choose b e s t genome (by o b j e c t i v e f unc t i on) , i f t i e , choose

random .
best = favo r pa r en t (rnd , mom, dad)
no t be s t = dad i f (bes t <> mom) else mom
s e l e c t e d l i n k s = []
s e l e c t e d n e u r o n s = []

current gene index from mom and dad
cur mom = 0
cur dad = 0
s e l e c t e d g e n e = None

add in the input and b ias , they shou ld always be here
always count = mom. input count + mom. output count + 1

156 NEAT, CPPN & HyperNEAT

for i from 0 to always count −1:
s e l e c t e d n e u r o n s . add (i , best , no t be s t)

Loop over a l l genes in both mother and f a t h e r
while (cur mom < mom. num genes) or (cur dad < dad . num genes) :

The mom and dad gene o b j e c t
mom gene = None
mom innovation = −1
dad gene = None
dad innovat ion = −1

grab the a c t u a l o b j e c t s from mom and dad f o r the s p e c i f i e d
indexes
i f t h e r e are none , then None

i f cur mom < mom. num genes :
mom gene = mom. l i n k s [cur mom] ;
mom innovation = mom gene . i n no v a t i o n i d

i f cur dad < dad . num genes :
dad gene = dad . l i n k s [cur dad]
dad innovat i on id = dad gene . i n no va t i o n i d

now s e l e c t a gene f r o r mom or dad . This gene i s f o r the baby
Dad gene only , mom has run out

i f mom gene == None and dad gene <> None :
cur dad = cur dad + 1
s e l e c t e d g e n e = dad gene

Mom gene only , dad has run out
else i f dadGene == n u l l and momGene <> n u l l :

cur mom = cur mom + 1
s e l e c t e d g e n e = mom gene

Mom has lower innovat ion number
else i f mom innovation id < dad innovat i on id :

cur mom = cur mom + 1
i f best == mom:

s e l e c t e d g e n e = mom gene
Dad has lower innova t ion number

else i f dad innovat i on id < mom innovation id :
cur dad = cur dad + 1
i f best == dad :

s e l e c t e d g e n e = dad gene
Mom and dad have the same innova t ion number
Fl i p a coin .

else i f dad innovat i on id == mom innovation id :
cur dad = cur dad + 1
cur mom = cur mom + 1
i f rnd . next double () >0.5:

8.1 NEAT Networks 157

s e l e c t e d g e n e = dad gene
else :

s e l e c t e d g e n e = mom gene
I f a gene was chosen f o r the c h i l d then process i t .
I f not , the loop cont inues .

i f s e l e c t e d g e n e <> None :
Do not add the same innova t ion tw ice in a row .

i f s e l e c t e d l i n k s . count == 0 :
s e l e c t e d l i n k s . add (s e l e c t e d g e n e)

else :
i f s e l e c t e d l i n k s [s e l e c t e d l i n k s . count−1]

. i n no va t i o n i d <> s e l e c t e d g e n e . i n n ov a t i o n i d {
s e l e c t e d l i n k s . add (s e l e c t e d g e n e)

Check i f we a l r eady have the nodes r e f e r r e d to in
SelectedGene .
I f not , they need to be added .

s e l e c t e d n e u r o n s . add (
s e l e c t e d g e n e . f rom neuron id , best , no t be s t)

s e l e c t e d n e u r o n s . add (
s e l e c t e d g e n e . to neuron id , best , no t be s t)

Done loop ing over parent ’ s genes
baby = new NEATGenome(s e l e c t e d l i n k s , s e l e c t e d n e u r o n s)
return baby

The above implementation of crossover is based on the NEAT crossover op-
erator implemented in Encog. We provide the above comments in order to
explain the critical sections of code. The primary evolution occurs on the
links contained in the mother and father. Any neurons needed to support
these links are brought along when the child genome is created. The code
contains a main loop that loops over both parents, thereby selecting the most
suitable link gene from each parent. The link genes from both parents are
essentially stitched together so they can find the most suitable gene. Because
the parents might be different lengths, one will likely exhaust its genes before
this process is complete.

158 NEAT, CPPN & HyperNEAT

Each time through the loop, a gene is chosen from either the mother or
father according to the following criteria:

• If mom or dad has run out, choose the other. Move past the chosen gene.

• If mom has a lower innovation ID number, choose mom if she has the
best score. In either case, move past mom’s gene.

• If dad has a lower innovation ID number, choose dad if he has the best
score. In either case, move past dad’s gene.

• If mom and dad have the same innovation ID, pick one randomly, and
move past their gene.

You can consider that the mother and father’s genes are both on a long tape. A
marker for each tape holds the current position. According to the rules above,
the marker will move past a parent’s gene. At some point, each parent’s marker
moves to the end of the tape, and that parent runs out of genes.

8.1.3 NEAT Speciation

Crossover is a tricky for computers to properly perform. In the animal and
plant kingdoms, crossover occurs only between members of the same species.
What exactly do we mean by species? In biology, scientists define species
as members of a population that can produce viable offspring. Therefore, a
crossover between a horse and humming bird genome would be catastrophically
unsuccessful. Yet a naive genetic algorithm would certainly try something just
as disastrous with artificial computer genomes!

The NEAT speciation algorithm has several variants. In fact, one of the
most advanced variants can group the population into a predefined number of
clusters with a type of k-means clustering. You can subsequently determine the
relative fitness of each species. The program gives each species a percentage
of the next generation’s population count. The members of each species then
compete in virtual tournaments to determine which members of the species
will be involved in crossover and mutation for the next generation.

8.2 CPPN Networks 159

A tournament is an effective way to select parents from a species. The
program performs a certain number of trials. Typically we use five trials.
For each trial, the program selects two random genomes from the species. The
fitter of each genome advances to the next trial. This process is very efficient for
threading, and it is also biologically plausible. The advantage to this selection
method is that the winner doesn’t have to beat the best genome in the species.
It has to beat the best genome in the trials. You must run a tournament for
each parent needed. Mutation requires one parent, and crossover needs two
parents.

In addition to the trials, several other factors determine the species mem-
bers chosen for mutation and crossover. The algorithm will always carry one
or more elite genomes to the next species. The number of elite genomes is
configurable. The program gives younger genomes a bonus so they have a
chance to try new innovations. Interspecies crossover will occur with a very
low probability.

All of these factors together make NEAT a very effective neural network
type. NEAT removes the need to define how the hidden layers of a neural net-
work are structured. The absence of a strict structure of hidden layers allows
NEAT neural networks to evolve the connections that are actually needed.

8.2 CPPN Networks

The compositional pattern-producing network (CPPN) was invented by Stan-
ley (2007) and is a variation of the artificial neural network. CPPN recognizes
one biologically plausible fact. In nature, genotypes and phenotypes are not
identical. In other words, the genotype is the DNA blueprint for an organism.
The phenotype is what actually results from that plan.

160 NEAT, CPPN & HyperNEAT

In nature, the genome is the instructions for producing a phenotype that
is much more complex than the genotype. In the original NEAT, as seen in
the last section, the genome describes link for link and neuron for neuron how
to produce the phenotype. However, CPPN is different because it creates a
population of special NEAT genomes. These genomes are special in two ways.
First, CPPN doesn’t have the limitations of regular NEAT, which always uses
a sigmoid activation function. CPPN can use any of the following activation
functions:

• Clipped linear

• Bipolar steepened sigmoid

• Gaussian

• Sine

• Others you might define

You can see these activation functions in Figure 8.3:

Figure 8.3: CPPN Activation Functions

8.2 CPPN Networks 161

The second difference is that the NEAT networks produced by these genomes
are not the final product. They are not the phenotype. However, these NEAT
genomes do know how to create the final product.

The final phenotype is a regular NEAT network with a sigmoid activation
function. We can use the above four activation functions only for the genomes.
The ultimate phenotype always has a sigmoid activation function.

8.2.1 CPPN Phenotype

CPPNs are typically used in conjunction with images, as the CPPN phenotype
is usually an image. Though images are the usual product of a CPPN, the
only real requirement is that the CPPN compose something, thereby earning
its name of compositional pattern-producing network. There are cases where
a CPPN does not produce an image. The most popular non-image producing
CPPN is HyperNEAT, which is discussed in the next section.

Creating a genome neural network to produce a phenotype neural network
is a complex but worthwhile endeavor. Because we are dealing with a large
number of input and output neurons, the training times can be considerable.
However, CPPNs are scalable and can reduce the training times.

Once you have evolved a CPPN to create an image, the size of the image
(the phenotype) does not matter. It can be 320x200, 640x480 or some other
resolution altogether. The image phenotype, generated by the CPPN will grow
to the size needed. As we will see in the next section, CPPNs give HyperNEAT
the same sort of scalability.

162 NEAT, CPPN & HyperNEAT

We will now look at how a CPPN, which is itself a NEAT network, pro-
duces an image, or the final phenotype. The NEAT CPPN should have three
input values: the coordinate on the horizontal axis (x), the coordinate on the
vertical axis (y), and the distance of the current coordinate from the center
(d). Inputting d provides a bias towards symmetry. In biological genomes,
symmetry is important. The output from the CPPN corresponds to the pixel
color at the x-coordinate and y-coordinate. The CPPN specification only de-
termines how to process a grayscale image with a single output that indicates
intensity. For a full-color image, you could use output neurons for red, green,
and blue. Figure 8.4 shows a CPPN for images:

Figure 8.4: CPPN for Images

You can query the above CPPN for every x-coordinate and y-coordinate
needed. Listing 8.2 shows the pseudocode that you can use to generate the
phenotype:

Listing 8.2: Generate CPPN Image
def render cppn (net , bitmap) :

for y from 1 to bitmap . he ight :
for x from 1 to bitmap . width :

Normalize x and y to −1,1
norm x = (2∗ (x/bitmap . width))−1
norm y = (2∗ (y/bitmap . he ight))−1

Distance from center
d = sq r t ((norm x /2) ˆ2

+ (norm y /2) ˆ2)

8.2 CPPN Networks 163

Cal l CPPN
input = [x , y , d]

c o l o r = net . compute (input)
Output p i x e l

bitmap . p l o t (x−1,y−1, c o l o r)

The above code simply loops over every pixel and queries the CPPN for the
color at that location. The x-coordinate and y-coordinate are normalized to
being between -1 and +1. You can see this process in action at the Picbreeder
website at following URL:

http://picbreeder.org/
Depending on the complexity of the CPPN, this process can produce images

similar to Figure 8.5:

Figure 8.5: A CPPN-Produced Image (picbreeder.org)

http://picbreeder.org/

164 NEAT, CPPN & HyperNEAT

Picbreeder allows you to select one or more parents to contribute to the
next generation. We selected the image that resembles a mouth, as well as the
image to the right. Figure 8.6 shows the subsequent generation that Picbreeder
produced.

Figure 8.6: A CPPN-Produced Image (picbreeder.org)

CPPN networks handle symmetry just like human bodies. With two hands,
two kidneys, two feet, and other body part pairs, the human genome seems
to have a hierarchy of repeated features. Instructions for creating an eye or
various tissues do not exist. Fundamentally, the human genome does not have
to describe every detail of an adult human being. Rather, the human genome
only has to describe how to build an adult human being by generalizing many
of the steps. This greatly simplifies the amount of information that is needed
in a genome.

Another great feature of the image CPPN is that you can create the above
images at any resolution and without retraining. Because the x-coordinate and
y-coordinate are normalized to between -1 and +1, you can use any resolution.

8.3 HyperNEAT Networks 165

8.3 HyperNEAT Networks

HyperNEAT networks, invented by Stanley, D’Ambrosio, & Gauci (2009), are
based upon the CPPN; however, instead of producing an image, a HyperNEAT
network creates another neural network. Just like the CPPN in the last section,
HyperNEAT can easily create much higher resolution neural networks without
retraining.

8.3.1 HyperNEAT Substrate

One interesting hyper-parameter of the HyperNEAT network is the substrate
that defines the structure of a HyperNEAT network. A substrate defines the
x-coordinate and the y-coordinate for the input and output neurons. Standard
HyperNEAT networks usually employ two planes to implement the substrate.
Figure 8.7 shows the sandwich substrate, one of the most common substrates:

Figure 8.7: HyperNEAT Sandwich Substrate

166 NEAT, CPPN & HyperNEAT

Together with the above substrate, a HyperNEAT CPPN is capable of
creating the phenotype neural network. The source plane contains the input
neurons, and the target plane contains the output neurons. The x-coordinate
and the y-coordinate for each are in the -1 to +1 range. There can potentially
be a weight between each of the source neurons and every target neuron.
Figure 8.8 shows how to query the CPPN to determine these weights:

Figure 8.8: CPPN for HyperNEAT

The input to the CPPN consists of four values: x1, y1, x2, and y2. The
first two values x1 and y1 specify the input neuron on the source plane. The
second two values x2 and y2 specify the input neuron on the target plane.
HyperNEAT allows the presence of as many different input and output neurons
as desired, without retraining. Just like the CPPN image could map more and
more pixels between -1 and +1, so too can HyperNEAT pack in more input
and output neurons.

8.3.2 HyperNEAT Computer Vision

Computer vision is a great application of HyperNEAT, as demonstrated by the
rectangles experiment provided in the original HyperNEAT paper by Stanley,
Kenneth O., et al. (2009). This experiment placed two rectangles in a com-
puter’s vision field. Of these two rectangles, one is always larger than the
other. The neural network is trained to place a red rectangle near the center

8.3 HyperNEAT Networks 167

of the larger rectangle. Figure 8.9 shows this experiment running under the
Encog framework:

Figure 8.9: Boxes Experiment (11 resolution)

As you can see from the above image, the red rectangle is placed directly
inside of the larger of the two rectangles. The “New Case” button can be
pressed to move the rectangles, and the program correctly finds the larger
rectangle. While this works quite well at 11x11, the size can be increased to
33x33. With the larger size, no retraining is needed, as shown in Figure 8.10:

168 NEAT, CPPN & HyperNEAT

Figure 8.10: Boxes Experiment (33 resolution)

When the dimensions are increased to 33x33, the neural network is still
able to place the red square inside of the larger rectangle.

The above example uses a sandwich substrate with the input and output
plane both equal to the size of the visual field, in this case 33x33. The input
plane provides the visual field. The neuron in the output plane with the highest
output is the program’s guess at the center of the larger rectangle. The fact
that the position of the large rectangle does not confuse the network shows
that HyperNEAT possesses some of the same features as the convolutional
neural networks that we will see in Chapter 10, “Convolutional Networks.”

8.4 Chapter Summary

This chapter introduced NEAT, CPPN, and HyperNEAT. Kenneth Stanley’s
EPLEX group at the University of Central Florida extensively researches all
three technologies. NeuroEvolution of Augmenting Topologies (NEAT) is an

8.4 Chapter Summary 169

algorithm that uses genetic algorithms to automatically evolve neural network
structures. Often the decision of the structure of a neural network can be
one of the most complex aspects of neural network design. NEAT neural
networks can evolve their own structure and even decide what input features
are important.

The compositional pattern-producing network (CPPN) is a type of neural
network that is evolved to create other structures, such as images or other neu-
ral networks. Image generation is a common task for CPPNs. The Picbreeder
website allows new images to be bred based on previous images generated
at this site. CPPNs can generate more than just images. The HyperNEAT
algorithm is an application of CPPNs for producing neural networks.

Hypercube-based NEAT, or HyperNEAT, is a type of CPPN that evolves
other neural networks that can easily handle much higher resolutions of their
dimensions as soon as they are trained. HyperNEAT allows a CPPN to be
evolved that can create neural networks. Being able to generate the neural
network allows you to introduce symmetry, and it gives you the ability to
change the resolution of the problem without retraining.

Neural networks have risen and declined in popularity several times since
their introduction. Currently, there is interest in neural networks that use deep
learning. In fact, deep learning involves several different concepts. The next
chapter introduces deep neural networks, and we expand this topic throughout
the remainder of this book.

171

Chapter 9

Deep Learning

• Convolutional Neural Networks & Dropout

• Tools for Deep Learning

• Contrastive Divergence

• Gibb’s Sampling

Deep learning is a relatively new advancement in neural network programming
and represents a way to train deep neural networks. Essentially, any neural
network with more than two layers is deep. The ability to create deep neural
networks has existed since Pitts (1943) introduced the multilayer perceptron.
However, we haven’t been able to effectively train neural networks until Hinton
(1984) became the first researcher to successfully train these complex neural
networks.

172 Deep Learning

9.1 Deep Learning Components

Deep learning is comprised of a number of different technologies, and this
chapter is an overview of these technologies. Subsequent chapters will contain
more information on these technologies. Deep learning typically includes the
following features:

• Partially Labeled Data

• Rectified Linear Units (ReLU)

• Convolutional Neural Networks

• Dropout

The succeeding sections provide an overview of these technologies.

9.2 Partially Labeled Data

Most learning algorithms are either supervised or unsupervised. Supervised
training data sets provide an expected outcome for each data item. Unsuper-
vised training data sets do not provide an expected outcome, which is called
a label. The problem is that most data sets are a mixture of labeled and
unlabeled data items.

To understand the difference between labeled and unlabeled data, consider
the following real-life example. When you were a child, you probably saw
many vehicles as you grew up. Early in your life, you did not know if you were
seeing a car, truck, or van. You simply knew that you were seeing some sort
of vehicle. You can consider this exposure as the unsupervised part of your
vehicle-learning journey. At that point, you learned commonalities of features
among these vehicles.

Later in your learning journey, you were given labels. As you encountered
different vehicles, an adult told you that you were looking at a car, truck,
or van. The unsupervised training created your foundation, and you built
upon that knowledge. As you can see, supervised and unsupervised learning

9.3 Rectified Linear Units 173

are very common in real life. In its own way, deep learning does well with a
combination of unsupervised and supervised learning data.

Some deep learning architectures handle partially labeled data and initial-
ize the weights by using the entire training set without the outcomes. You
can independently train the individual layers without the labels. Because you
can train the layers in parallel, this process is scalable. Once the unsupervised
phase has initialized these weights, the supervised phase can tweak them.

9.3 Rectified Linear Units

The Rectified linear unit (ReLU) has become the standard activation func-
tion for the hidden layers of a deep neural network. However, the restricted
Boltzmann machine (RBM) is the standard for the deep belief neural network
(DBNN). In addition to the ReLU activation functions for the hidden layers,
deep neural networks will use a linear or softmax activation function for the
output layer, depending on if the neural network supports regression or clas-
sification. We introduced ReLUs in Chapter 1, “Neural Network Basics,” and
expanded upon this information in “Chapter 6, Backpropagation Training.”

174 Deep Learning

9.4 Convolutional Neural Networks

Convolution is an important technology that is often combined with deep
learning. Hinton (2014) introduced convolution to allow image-recognition
networks to function similarly to biological systems and achieve more accurate
results. One approach is sparse connectivity in which we do not create every
possible weight. Figure 9.1 shows sparse connectivity:

Figure 9.1: Sparse Connectivity

A regular feedforward neural network usually creates every possible weight
connection between two layers. In deep learning terminology, we refer to these
layers as dense layers. In addition to not representing every weight possible,
convolutional neural networks will also share weights, as seen in Figure 9.2:

9.5 Neuron Dropout 175

Figure 9.2: Shared Weights

As you can see in the above figure, the neurons share only three individual
weights. The red (solid), black (dashed), and blue (dotted) lines indicate
the individual weights. Sharing weights allows the program to store complex
structures while maintaining memory and computation efficiency.

This section presented an overview of convolutional neural networks. Chap-
ter 10, “Convolutional Neural Networks,” is devoted entirely to this network
type.

9.5 Neuron Dropout

Dropout is a regularization technique that holds many benefits for deep learn-
ing. Like most regularization techniques, dropout can prevent overfitting. You
can also apply dropout to a neural network in a layer-by-layer fashion as you
do in convolution. You must designate a single layer as a dropout layer. In
fact, you can mix these dropout layers with regular layers and convolutional
layers in the neural network. Never mix the dropout and convolutional layers
within a single layer.

Hinton (2012) introduced dropout as a simple and effective regularization
algorithm to reduce overfitting. Dropout works by removing certain neurons
in the dropout layer. The act of dropping these neurons prevents other neu-
rons from becoming overly dependent on the dropped neurons. The program
removes these chosen neurons, along with all of their connections. Figure 9.3
illustrates this process:

176 Deep Learning

Figure 9.3: Dropout Layer

From left to right, the above neural network contains an input layer, a
dropout layer, and an output layer. The dropout layer has removed several of
the neurons. The circles, made of dotted lines, indicate the neurons that the
dropout algorithm removed. The dashed connector lines indicate the weights
that the dropout algorithm removed when it eliminated the neurons.

Both dropout and other forms of regularization are extensive topics in the
field of neural networks. Chapter 12, “Dropout and Regularization,” covers
regularization with particular focus on dropout. That chapter also contains an
explanation on the L1 and L2 regularization algorithms. L1 and L2 discourage
neural networks from the excessive use of large weights and the inclusion of
certain irrelevant inputs. Essentially, a single neural network commonly uses
dropout as well as other regularization algorithms.

9.6 GPU Training

Hinton (1987) introduced a very novel way to train the deep belief neural net-
work (DBNN) efficiently. We examine this algorithm and DBNNs later in this
chapter. As mentioned previously, deep neural networks have existed almost
as long as the neural network. However, until Hinton’s algorithm, no effective

9.6 GPU Training 177

way to train deep neural networks existed. The backpropagation algorithms
are very slow, and the vanishing gradient problem hinders the training.

The graphics processing unit (GPU), the part of the computer that is
responsible for graphics display, is the way that researchers solved the training
problem of feedforward neural networks. Most of us are familiar with GPUs
because of modern video games that utilize 3D graphics. Rendering these
graphical images is mathematically intense, and, to perform these operations,
early computers relied on the central processing unit (CPU). However, this
approach was not effective. The graphics systems in modern video games
require dedicated circuitry, which became the GPU, or video card. Essentially,
modern GPUs are computers that function within your computer.

As researchers discovered, the processing power contained in a GPU can be
harnessed for mathematically intense tasks, such as neural network training.
We refer to this utilization of the GPU for general computing tasks, aside
from computer graphics, as general-purpose use of the GPU (GPGPU). When
applied to deep learning, the GPU performs extraordinarily well. Combining it
with ReLU activation functions, regularization, and regular backpropagation
can produce amazing results.

However, GPGPU can be difficult to use. Programs written for the GPU
must employ a very low-level programming language called C99. This lan-
guage is very similar to the regular C programming language. However, in
many ways, the C99 required by the GPU is much more difficult than the
regular C programming language. Furthermore, GPUs are good only at cer-
tain tasks–even those conducive to the GPU because optimizing the C99 code
is challenging. GPUs must balance several classes of memory, registers, and
synchronization of hundreds of processor cores. Additionally, GPU process-
ing has two competing standards–CUDA and OpenCL. Two standards create
more processes for the programmer to learn.

Fortunately, you do not need to learn GPU programming to exploit its
processing power. Unless you are willing to devote a considerable amount
of effort to learn the nuances of a complex and evolving field, we do not
recommend that you learn to program the GPU because it is quite different
from CPU programming. Good techniques that produce efficient, CPU-based
programs will often produce horribly inefficient GPU programs. The reverse is
also true. If you would like to use GPU, you should work with an off-the-shelf

178 Deep Learning

package that supports it. If your needs do not fit into a deep learning package,
you might consider using a linear algebra package, such as CUBLAS, which
contains many highly optimized algorithms for the sorts of linear algebra that
machine learning commonly requires.

The processing power of a highly optimized framework for deep learning
and a fast GPU can be amazing. GPUs can achieve outstanding results based
on sheer processing power. In 2010, the Swiss AI Lab IDSIA showed that,
despite the vanishing gradient problem, the superior processing power of GPUs
made backpropagation feasible for deep feedforward neural networks (Ciresan
et al., 2010). The method outperformed all other machine learning techniques
on the famous MNIST handwritten digit problem.

9.7 Tools for Deep Learning

One of the primary challenges of deep learning is the processing time to train
a network. We often run training algorithms for many hours, or even days,
seeking neural networks that fit well to the data sets. We use several frame-
works for our research and predictive modeling. The examples in this book
also utilize these frameworks, and we will present all of these algorithms in
sufficient detail for you to create your own implementation. However, unless
your goal is to conduct research to enhance deep learning itself, you are best
served by working with an established framework. Most of these frameworks
are tuned to train very fast.

We can divide the examples from this book into two groups. The first
group shows you how to implement a neural network or to train an algorithm.
However, most of the examples in this book are based on algorithms, and we
examine the algorithm at its lowest level.

Application examples are the second type of example contained in this
book. These higher-level examples show how to use neural network and deep
learning algorithms. These examples will usually utilize one of the frameworks
discussed in this section. In this way, the book strikes a balance between theory
and real-world application.

9.7 Tools for Deep Learning 179

9.7.1 H2O

H2O is a machine learning framework that supports a wide variety of pro-
gramming languages. Though H2O is implemented in Java, it is designed as a
web service. H2O can be used with R, Python, Scala, Java, and any language
that can communicate with H2O’s REST API.

Additionally, H2O can be used with Apache Spark for big data and big
compute operations. The Sparking Water package allows H2O to run large
models in memory across a grid of computers. For more information about
H2O, refer to the following URL:

http://0xdata.com/product/deep-learning/
In addition to deep learning, H2O supports a variety of other machine

learning models, such as logistic regression, decision trees, and gradient boost-
ing.

9.7.2 Theano

Theano is a mathematical package for Python, similar to the widely used
Python package, Numpy (J. Bergstra, O. Breuleux, F. Bastien, et al., J.
Bergstra, O. Breuleux, F. Bastien, 2012). Like Numpy, Theano primarily tar-
gets mathematics. Though Theano does not directly implement deep neural
networks, it provides all of the mathematical tools necessary for the program-
mer to create deep neural network applications. Theano also directly supports
GPGPU. You can find the Theano package at the following URL:

http://deeplearning.net/software/theano/
The creators of Theano also wrote an extensive tutorial for deep learning,

using Theano that can be found at the following URL:
http://deeplearning.net/

9.7.3 Lasagne and NoLearn

Because Theano does not directly support deep learning, several packages
have been built upon Theano to make it easy for the programmer to imple-
ment deep learning. One pair of packages, often used together, is Lasagne and

http://0xdata.com/product/deep-learning/
http://deeplearning.net/software/theano/
http://deeplearning.net/

180 Deep Learning

Nolearn. Nolearn is a package for Python that provides abstractions around
several machine learning algorithms. In this way, Nolearn is similar to the pop-
ular framework, Scikit-Learn. While Scikit-Learn focuses widely on machine
learning, Nolearn specializes on neural networks. One of the neural network
packages supported by Nolearn is Lasagne, which provides deep learning and
can be found at the following URL:

https://pypi.python.org/pypi/Lasagne/0.1dev
You can access the Nolearn package at the following URL:
https://github.com/dnouri/nolearn
The deep learning framework Lasange takes its name from the Italian food

lasagna. The spellings “lasange” and “lasagna” are both considered valid
spellings of the Italian food. In the Italian language, “lasange” is singular,
and “lasagna” is the plural form. Regardless of the spelling used, lasagna is a
good name for a deep learning framework. Figure 9.4 shows that, like a deep
neural network, lasagna is made up of many layers:

Figure 9.4: Lasagna Layers

https://pypi.python.org/pypi/Lasagne/0.1dev
https://github.com/dnouri/nolearn

9.8 Deep Belief Neural Networks 181

9.7.4 ConvNetJS

Deep learning support has also been created for Javascript. The ConvNetJS
package implements many deep learning algorithms, particularly in the area
of convolutional neural networks. ConvNetJS primarily targets the creation
of deep learning examples on websites. We used ConvNetJS to provide many
of the deep learning JavaScript examples on this book’s website:

http://cs.stanford.edu/people/karpathy/convnetjs/

9.8 Deep Belief Neural Networks

The deep belief neural network (DBNN) was one of the first applications of
deep learning. A DBNN is simply a regular belief network with many layers.
Belief networks, introduced by Neil in 1992 are different from regular feed-
forward neural networks. Hinton (2007) describes DBNNs as “probabilistic
generative models that are composed of multiple layers of stochastic, latent
variables.” Because this technical description is complicated, we will define
some terms.

• Probabilistic - DBNNs are used to classify, and their output is the
probability that an input belongs to each class.

• Generative - DBNNs can produce plausible, randomly created values
for the input values. Some DBNN literatures refer to this trait as dream-
ing.

• Multiple layers - Like a neural network, DBNNs can be made of mul-
tiple layers.

• Stochastic, latent variables - DBNNs are made up of Boltzmann ma-
chines that produce random (stochastic) values that cannot be directly
observed (latent).

The primary differences between a DBNN and a feedforward neural network
(FFNN) are summarized as follows:

http://cs.stanford.edu/people/karpathy/convnetjs/

182 Deep Learning

• Input to a DBNN must be binary; input to a FFNN is a decimal number.

• The output from a DBNN is the class to which the input belongs; the
output from a FFNN can be a class (classification) or a numeric predic-
tion (regression).

• DBNNs can generate plausible input based on a given outcome. FFNNs
cannot perform like the DBNNs.

These are important differences. The first bullet item is one of the most
limiting factors of DBNNs. The fact that a DBNN can accept only binary
input often severely limits the type of problem that it can tackle. You also
need to note that a DBNN can be used only for classification and not for
regression. In other words, a DBNN could classify stocks into categories such
as buy, hold, or sell; however, it could not provide a numeric prediction about
the stock, such as the amount that may be attained over the next 30 days. If
you need any of these features, you should consider a regular deep feedforward
network.

Compared to feedforward neural networks, DBNNs may initially seem
somewhat restrictive. However, they do have the ability to generate plausible
input cases based on a given output. One of the earliest DBNN experiments
was to have a DBNN classify ten digits, using handwritten samples. These
digits were from the classic MNIST handwritten digits data set that was in-
cluded in this book’s introduction. Once the DBNN is trained on the MNIST
digits, it can produce new representations of each digit, as seen in Figure 9.5:

9.8 Deep Belief Neural Networks 183

Figure 9.5: DBNN Dreaming of Digits

The above digits were taken from Hinton’s (2006) deep learning paper. The
first row shows a variety of different zeros that the DBNN generated from its
training data.

The restricted Boltzmann machine (RBM) is the center of the DBNN. Input
provided to the DBNN passes through a series of stacked RBMs that make
up the layers of the network. Creating additional RBM layers causes deeper
DBNNs. Though RBMs are unsupervised, the desire is for the resulting DBNN
to be supervised. To accomplish the supervision, a final logistic regression
layer is added to distinguish one class from another. In the case of Hinton’s
experiment, shown in Figure 9.6, the classes are the ten digits:

184 Deep Learning

Figure 9.6: Deep Belief Neural Network (DBNN)

The above diagram shows a DBNN that uses the same hyper-parameters
as Hinton’s experiment. Hyper-parameters specify the architecture of a neu-
ral network, such as the number of layers, hidden neuron counts, and other
settings. Each of the digit images presented to the DBNN is 28x28 pixels, or
vectors of 784 pixels. The digits are monochrome (black & white) so these
784 pixels are single bits and are thus compatible with the DBNN’s require-
ment that all input be binary. The above network has three layers of stacked
RBMs, containing 500 neurons, a second 500-neuron layer, and 2,000 neurons,
respectively.

The following sections discuss a number of algorithms used to implement
DBNNs.

9.8 Deep Belief Neural Networks 185

9.8.1 Restricted Boltzmann Machines

Because Chapter 3, “Hopfield & Boltzmann Machines,” includes a discussion
of Boltzmann machines, we will not repeat this material here. This chapter
deals with the restricted version of the Boltzmann machine and stacking these
RBMs to achieve depth. Figure 2.10, from Chapter 3, shows an RBM. The
primary difference with an RBM is that the visible (input) neurons and the
hidden (output) neurons have the only connections. In the case of a stacked
RBM, the hidden units become the output to the next layer. Figure 9.7 shows
how two Boltzmann machines are stacked:

Figure 9.7: Stacked RBMs

We can calculate the output from an RBM exactly as shown in Chapter
3, “Hopfield & Boltzmann Machines,” in Equation 3.6. The only difference is
now we have two Boltzmann machines stacked. The first Boltzmann machine
receives three inputs passed to its visible units. The hidden units pass their
output directly to the two inputs (visible units) of the second RBM. Notice
that there are no weights between the two RBMs, and the output from the H1
and H2 units in RBM1 pass directly to I1 and I2 from RBM2.

186 Deep Learning

9.8.2 Training a DBNN

The process of training a DBNN requires a number of steps. Although the
mathematics behind this process can become somewhat complex, you don’t
need to understand every detail for training DBNNs in order to use them. You
just need to know the following key points:

• DBNNs undergo supervised and unsupervised training.

• During the unsupervised portion, the DBNN uses training data with-
out their labels, which allows DBNNs to have a mix of supervised and
unsupervised data.

• During the supervised portion, only training data with labels are used.

• Each DBNN layer is trained independently during the unsupervised por-
tion.

• It is possible to train the DBNN layers concurrently (with threads) dur-
ing the unsupervised portion.

• After the unsupervised portion is complete, the output from the layers
is refined with supervised logistic regression.

• The top logistic regression layer predicts the class to which the input
belongs.

Armed with this knowledge, you can skip ahead to the deep belief classification
example in this chapter. However, if you wish to learn the specific details of
DBNN training, read on.

9.8 Deep Belief Neural Networks 187

Figure 9.8 provides a summary of the steps of DBNN training:

Figure 9.8: DBNN Training

9.8.3 Layer-Wise Sampling

The first step when performing unsupervised training on an individual layer
is to calculate all values of the DBNN up to that layer. You will do this
calculation for every training set, and the DBNN will provide you with sampled
values at the layer that you are currently training. Sampled refers to the
fact that the neural network randomly chooses a true/false value based on a
probability.

You need to understand that sampling uses random numbers to provide

188 Deep Learning

you with your results. Because of this randomness, you will not always get
the same result. If the DBNN determines that a hidden neuron’s probability
of true is 0.75, then you will get a value of true 75% of the time. Layer-wise
sampling is very similar to the method that we used to calculate the output
of Boltzmann machines in Chapter 3, “Hopfield & Boltzmann Machines.” We
will use Equation 3.6, from chapter 3 to compute the probability. The only
difference is that we will use the probability given by Equation 3.6 to generate
a random sample.

The purpose of the layer-wise sampling is to produce a binary vector to
feed into the contrastive divergence algorithm. When training each RBM, we
always provide the output of the previous RBM as the input to the current
RBM. If we are training the first RBM (closest to the input), we simply use
the training input vector for contrastive divergence. This process allows each
of the RBMs to be trained. The final softmax layer of the DBNN is not trained
during the unsupervised phase. The final logistic regression phase will train
the softmax layer.

9.8.4 Computing Positive Gradients

Once the layer-wise training has processed each of the RBM layers, we can
utilize the up-down algorithm, or the contrastive divergence algorithm. This
complete algorithm includes the following steps, covered in the next sections
of this book:

• Computing Positive Gradients

• Gibbs Sampling

• Update Weights and Biases

• Supervised Backpropagation

Like many of the gradient-descent-based algorithms presented in Chapter 6,
“Backpropagation Training,” the contrastive divergence algorithm is also based
on gradient descent. It uses the derivative of a function to find the inputs
to the function that produces the lowest output for that function. Several

9.8 Deep Belief Neural Networks 189

different gradients are estimated during contrastive divergence. We can use
these estimates instead of actual calculations because the real gradients are
too complex to calculate. For machine learning, an estimate is often good
enough.

Additionally, we must calculate the mean probability of the hidden units by
propagating the visible units to the hidden ones. This computation is the “up”
portion of the up-down algorithm. Equation 9.1 performs this calculation:

h̄+
i = sigmoid(

∑
j

wjvj + bi) (9.1)

The above equation calculates the mean probability of each of the hidden
neurons (h). The bar above the h designates it as a mean, and the positive
subscript indicates that we are calculating the mean for the positive (or up)
part of the algorithm. The bias is added to the sigmoid function value of the
weighted sum of all visible units.

Next a value must be sampled for each of the hidden neurons. This value
will randomly be either true (1) or false (0) with the mean probability just
calculated. Equation 9.2 accomplishes this sampling:

h+
i =

1 r < h̄+
i

0 r ≥ h̄+
i

(9.2)

This equation assumes that r is a uniform random value between 0 and 1.
A uniform random number simply means that every possible number in that
range has an equal probability of being chosen.

190 Deep Learning

9.8.5 Gibbs Sampling

The calculation of the negative gradients is the “down” phase of the up-down
algorithm. To accomplish this calculation, the algorithm uses Gibbs sapling
to estimate the mean of the negative gradients. Geman and Geman (1984)
introduced Gibbs sampling and named it after the physicist Josiah Willard
Gibbs. The technique is accomplished by looping through k iterations that
improve the quality of the estimate. Each iteration performs two steps:

• Sample visible neurons give hidden neurons.

• Sample hidden neurons give visible neurons.

For the first iteration of Gibbs sampling, we start with the positive hidden
neuron samples obtained from the last section. We will sample visible neuron
average probabilities from these (first bullet above). Next, we will use these
visible hidden neurons to sample hidden neurons (second bullet above). These
new hidden probabilities are the negative gradients. For the next cycle, we will
use the negative gradients in place of the positive ones. This continues for each
iteration and produces better negative gradients. Equation 9.3 accomplishes
sampling of the visible neurons (first bullet):

v̄−i = sigmoid(
∑
j

wjhj + bi) (9.3)

This equation is essentially the reverse of Equation 9.1. Here, we determine
the average visible mean using the hidden values. Again, just like we did for
the positive gradients, we sample a negative probability using Equation 9.4:

v−i =
1 r < v̄−i

0 r ≥ v̄−i
(9.4)

The above equation assumes that r is a uniform random number between 0
and 1.

The above two equations are only half of the Gibbs sampling step. These
equations accomplished the first bullet point above because they sample visible
neurons, given hidden neurons. Next, we must accomplish the second bullet

9.8 Deep Belief Neural Networks 191

point. We must sample hidden neurons, given visible neurons. This process is
very similar to the above section, “Computing Positive Gradients.” This time,
however, we are calculating the negative gradients.

The visible unit samples just calculated can obtain hidden means, as shown
in Equation 9.5:

h̄−i = sigmoid(
∑
j

wjvj + bi) (9.5)

Just as before, mean probability can sample an actual value. In this case, we
use the hidden mean to sample a hidden value, as demonstrated by Equation
9.6:

h−i =
1 r < h̄−i

0 r ≥ h̄−i
(9.6)

The Gibbs sampling process continues. The negative hidden samples can pro-
cess each iteration. Once this calculation is complete, you have the following
six vectors:

• Positive mean probabilities of the hidden neurons

• Positive sampled values of the hidden neurons

• Negative mean probabilities of visible neurons

• Negative sampled values of visible neurons

• Negative mean probabilities of hidden neurons

• Negative sampled values of hidden neurons

These values will update the neural network’s weights and biases.

9.8.6 Update Weights & Biases

The purpose of any neural network training is to update the weights and bi-
ases. This adjustment is what allows the neural network to learn to perform

192 Deep Learning

the intended task. This is the final step for the unsupervised portion of the
DBNN training process. In this step, the weights and biases of a single layer
(Boltzmann machine) will be updated. As previously mentioned, the Boltz-
mann layers are trained independently.

The weights and biases are updated independently. Equation 9.7 shows
how to update a weight:

∆ij =
ε(h̄+

i xj − h̄−i v−j)
|x|

(9.7)

The learning rate (ε, epsilon) specifies how much of a calculated change should
be applied. High learning rates will learn quicker, but they might skip over an
optimal set of weights. Lower learning rates learn more slowly, but they might
have a higher quality result. The value x represents the current training set
element. Because x is a vector (array), the x enclosed in two bars represents
the length of x. The above equation also uses the positive mean hidden prob-
abilities, the negative mean hidden probabilities, and the negative sampled
values.

Equation 9.8 calculates the biases in a similar fashion:

∆bi = ε(h+
i − h̄−i)
||x||

(9.8)

The above equation uses the sampled hidden value from the positive phase and
the mean hidden value from the negative phase, as well as the input vector.
Once the weights and biases have been updated, the unsupervised portion of
the training is done.

9.8.7 DBNN Backpropagation

Up to this point, the DBNN training has focused on unsupervised training.
The DBNN used only the training set inputs (x values). Even if the data set
provided an expected output (y values), the unsupervised training didn’t use
it. Now the DBNN is trained with the expected outputs. We use only data set
items that contain an expected output during this last phase. This step allows
the program to use DBNN networks with data sets where each item does not

9.8 Deep Belief Neural Networks 193

necessarily have an expected output. We refer to the data as partially labeled
data sets.

The final layer of the DBNN is simply a neuron for each class. These
neurons have weights to the output of the previous RBM layer. These output
neurons all use sigmoid activation functions and a softmax layer. The softmax
layer ensures that the output for each of the classes sum to 1.

Regular backpropagation trains this final layer. The final layer is essentially
the output layer of a feedforward neural network that receives its input from
the top RBM. Because Chapter 6, “Backpropagation Training,” contains a
discussion of backpropagation, we will not repeat the information here. The
main idea of a DBNN is that the hierarchy allows each layer to interpret the
data for the next layer. This hierarchy allows the learning to spread across
the layers. The higher layers learn more abstract notions while the lower
layers form from the input data. In practice, DBNNs can process much more
complex of patterns than a regular backpropagation-trained feedforward neural
network.

9.8.8 Deep Belief Application

This chapter presents a simple example of the DBNN. This example simply
accepts a series of input patterns as well as the classes to which these input
patterns belong. The input patterns are shown below:
[[1 , 1 , 1 , 1 , 0 , 0 , 0 , 0] ,

[1 , 1 , 0 , 1 , 0 , 0 , 0 , 0] ,
[1 , 1 , 1 , 0 , 0 , 0 , 0 , 0] ,
[0 , 0 , 0 , 0 , 1 , 1 , 1 , 1] ,
[0 , 0 , 0 , 0 , 1 , 1 , 0 , 1] ,
[0 , 0 , 0 , 0 , 1 , 1 , 1 , 0]]

We provide the expected output from each of these training set elements. This
information specifies the class to which each of the above elements belongs and
is shown below:
[[1 , 0] ,

[1 , 0] ,
[1 , 0] ,
[0 , 1] ,

194 Deep Learning

[0 , 1] ,
[0 , 1]]

The program provided in the book’s example creates a DBNN with the fol-
lowing configuration:

• Input Layer Size: 8

• Hidden Layer #1: 2

• Hidden Layer #2: 3

• Output Layer Size: 2

First, we train each of the hidden layers. Finally, we perform logistic regression
on the output layer. The output from this program is shown here:
Training Hidden Layer #0
Train ing Hidden Layer #1
I t e r a t i o n : 1 , Superv i sed t r a i n i n g : e r r o r = 0.2478464544753616
I t e r a t i o n : 2 , Superv i sed t r a i n i n g : e r r o r = 0.23501688281192523
I t e r a t i o n : 3 , Superv i sed t r a i n i n g : e r r o r = 0.2228704042138232
. . .
I t e r a t i o n : 287 , Superv i sed t r a i n i n g : e r r o r = 0.001080510032410002
I t e r a t i o n : 288 , Superv i sed t r a i n i n g : e r r o r = 7.821742124428358E−4
[0 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0] −> [0 .9649828726012807 ,

0 .03501712739871941]
[1 . 0 , 0 . 0 , 1 . 0 , 1 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0] −> [0 .9649830045627616 ,

0 .035016995437238435]
[0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 1 . 0 , 1 . 0 , 1 . 0] −> [0 .03413161595489315 ,

0 .9658683840451069]
[0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 1 . 0 , 0 . 0 , 1 . 0 , 1 . 0] −> [0 .03413137188719462 ,

0 .9658686281128055]

As you can see, the program first trained the hidden layers and then went
through 288 iterations of regression. The error level dropped considerably
during these iterations. Finally, the sample data quizzed the network. The
network responded with the probability of the input sample being in each of
the two classes that we specified above.

9.9 Chapter Summary 195

For example, the network reported the following element:
[0 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0]

This element had a 96% probability of being in class 1, but it had only a 4%
probability of being in class 2. The two probabilities reported for each item
must sum to 100%.

9.9 Chapter Summary

This chapter provided a high-level overview of many of the components of deep
learning. A deep neural network is any network that contains more than two
hidden layers. Although deep networks have existed for as long as multilayer
neural networks, they have lacked good training methods until recently. New
training techniques, activation functions, and regularization are making deep
neural networks feasible.

Overfitting is a common problem for many areas of machine learning; neu-
ral networks are no exception. Regularization can prevent overfitting. Most
forms of regularization involve modifying the weights of a neural network as the
training occurs. Dropout is a very common regularization technique for deep
neural networks that removes neurons as training progresses. This technique
prevents the network from becoming overly dependent on any one neuron.

We ended the chapter with the deep belief neural network (DBNN), which
classifies data that might be partially labeled. First, both labeled and unla-
beled data can initialize the weights of the neural network with unsupervised
training. Using these weights, a logistic regression layer can fine-tune the
network to the labeled data.

We also discussed the convolutional neural networks (CNN) in this chapter.
This type of neural network causes the weights to be shared between the
various neurons in the network. This neural network allows the CNN to deal
with the types of overlapping features that are very common in computer
vision. We provided only a general overview of CNN because we will examine
the CNNs in greater detail in the next chapter.

197

Chapter 10

Convolutional Neural Networks

• Sparse Connectivity

• Shared Weights

• Max-pooling

The convolutional neural network (CNN) is a neural network technology that
has profoundly impacted the area of computer vision (CV). Fukushima (1980)
introduced the original concept of a convolutional neural network, and Le-
Cun, Bottou, Bengio & Haffner (1998) greatly improved this work. From this
research, Yan LeCun introduced the famous LeNet-5 neural network architec-
ture. This chapter follows the LeNet-5 style of convolutional neural network.

Although computer vision primarily uses CNNs, this technology has some
application outside of the field. You need to realize that if you want to utilize
CNNs on non-visual data, you must find a way to encode your data so that it
can mimic the properties of visual data.

CNNs are somewhat similar to the self-organizing map (SOM) architecture
that we examined in Chapter 2, “Self-Organizing Maps.” The order of the
vector elements is crucial to the training. In contrast, most neural networks
that are not CNNs or SOMs treat their input data as a long vector of values,
and the order that you arrange the incoming features in this vector is irrelevant.
For these types of neural networks, you cannot change the order after you

198 Convolutional Neural Networks

have trained the network. In other words, CNNs and SOMs do not follow the
standard treatment of input vectors.

The SOM network arranged the inputs into a grid. This arrangement
worked well with images because the pixels in closer proximity to each other
are important to each other. Obviously, the order of pixels in an image is
significant. The human body is a relevant example of this type of order. For
the design of the face, we are accustomed to eyes being near to each other. In
the same way, neural network types like SOMs adhere to an order of pixels.
Consequently, they have many applications to computer vision.

Although SOMs and CNNs are similar in the way that they map their
input into 2D grids or even higher-dimension objects such as 3D boxes, CNNs
take image recognition to higher level of capability. This advance in CNNs
is due to years of research on biological eyes. In other words, CNNs utilize
overlapping fields of input to simulate features of biological eyes. Until this
breakthrough, AI had been unable to reproduce the capabilities of biological
vision.

Scale, rotation, and noise have presented challenges in the past for AI
computer vision research. You can observe the complexity of biological eyes
in the example that follows. A friend raises a sheet of paper with a large
number written on it. As your friend moves nearer to you, the number is still
identifiable. In the same way, you can still identify the number when your
friend rotates the paper. Lastly, your friend creates noise by drawing lines
on top of the page, but you can still identify the number. As you can see,
these examples demonstrate the high function of the biological eye and allow
you to understand better the research breakthrough of CNNs. That is, this
neural network has the ability to process scale, rotation, and noise in the field
of computer vision.

10.1 LeNET-5

We can use the LeNET-5 architecture primarily for the classification of graph-
ical images. This network type is similar to the feedforward network that we
examined in previous chapters. Data flow from input to the output. However,
the LeNET-5 network contains several different layer types, as Figure 10.1

10.1 LeNET-5 199

illustrates:

Figure 10.1: A LeNET-5 Network (LeCun, 1998)

Several important differences exist between a feedforward neural network
and a LeNET-5 network:

• Vectors pass through feedforward networks; 3D cubes pass through LeNET-
5 networks.

• LeNET-5 networks contain a variety of layer types.

• Computer vision is the primary application of the LeNET-5.

However, we have also explored the many similarities between the networks.
The most important similarity is that we can train the LeNET-5 with the same
backpropagation-based techniques. Any optimization algorithm can train the
weights of either a feedforward or LeNET-5 network. Specifically, you can uti-
lize simulated annealing, genetic algorithms, and particle swarm for training.
However, LeNET-5 frequently uses backpropagation training.

The following three layer types comprise the original LeNET-5 neural net-
works:

• Convolutional Layers

• Max-pool Layers

• Dense Layers

200 Convolutional Neural Networks

Other neural network frameworks will add additional layer types related to
computer vision. However, we will not explore these additions beyond the
LeNET-5 standard. Adding new layer types is a common means of augmenting
existing neural network research. Chapter 12, “Dropout and Regularization,”
will introduce an additional layer type that is designed to reduce overfitting
by adding a dropout layer.

For now, we focus our discussion on the layer types associated with convo-
lutional neural networks. We will begin with convolutional layers.

10.2 Convolutional Layers

The first layer that we will examine is the convolutional layer. We will begin
by looking at the hyper-parameters that you must specify for a convolutional
layer in most neural network frameworks that support the CNN:

• Number of filters

• Filter Size

• Stride

• Padding

• Activation Function/Non-Linearity

The primary purpose for a convolutional layer is to detect features such as
edges, lines, blobs of color, and other visual elements. The filters can detect
these features. The more filters that we give to a convolutional layer, the more
features it can detect.

A filter is a square-shaped object that scans over the image. A grid can
represent the individual pixels of a grid. You can think of the convolutional
layer as a smaller grid that sweeps left to right over each row of the image.
There is also a hyper-parameter that specifies both the width and height of
the square-shaped filter. Figure 10.1 shows this configuration in which you see
the six convolutional filters sweeping over the image grid:

10.2 Convolutional Layers 201

A convolutional layer has weights between it and the previous layer or
image grid. Each pixel on each convolutional layer is a weight. Therefore, the
number of weights between a convolutional layer and its predecessor layer or
image field is the following:
[F i l t e r S i z e] ∗ [F i l t e r S i z e] ∗ [# o f F i l t e r s]

For example, if the filter size were 5 (5x4) for 10 filters, there would be 250
weights.

You need to understand how the convolutional filters sweep across the
previous layer’s output or image grid. Figure 10.2 illustrates the sweep:

Figure 10.2: Convolutional Filter

The above figure shows a convolutional filter with a size of 4 and a padding
size of 1. The padding size is responsible for the boarder of zeros in the
area that the filter sweeps. Even though the image is actually 8x7, the extra
padding provides a virtual image size of 9x8 for the filter to sweep across. The
stride specifies the number of positions at which the convolutional filters will
stop. The convolutional filters move to the right, advancing by the number of
cells specified in the stride. Once the far right is reached, the convolutional

202 Convolutional Neural Networks

filter moves back to the far left, then it moves down by the stride amount and
continues to the right again.

Some constraints exist in relation to the size of the stride. Obviously, the
stride cannot be 0. The convolutional filter would never move if the stride
were set to 0. Furthermore, neither the stride, nor the convolutional filter
size can be larger than the previous grid. There are additional constraints on
the stride (s), padding (p) and the filter width (f) for an image of width (w).
Specifically, the convolutional filter must be able to start at the far left or top
boarder, move a certain number of strides, and land on the far right or bottom
boarder. Equation 10.1 shows the number of steps a convolutional operator
must take to cross the image:

steps = w − f + 2p
s+ 1 (10.1)

The number of steps must be an integer. In other words, it cannot have
decimal places. The purpose of the padding (p) is to be adjusted to make this
equation become an integer value.

We can use the same set of weights as the convolutional filter sweeps over
the image. This process allows convolutional layers to share weights and
greatly reduce the amount of processing needed. In this way, you can recog-
nize the image in shift positions because the same convolutional filter sweeps
across the entire image.

The input and output of a convolutional layer are both 3D boxes. For the
input to a convolutional layer, the width and height of the box is equal to the
width and height of the input image. The depth of the box is equal to the
color depth of the image. For an RGB image, the depth is 3, equal to the
components of red, green, and blue. If the input to the convolutional layer is
another layer, then it will also be a 3D box; however, the dimensions of that
3D box will be dictated by the hyper-parameters of that layer.

Like any other layer in the neural network, the size of the 3D box output
by a convolutional layer is dictated by the hyper-parameters of the layer. The
width and height of this box are both equal to the filter size. However, the
depth is equal to the number of filters.

10.3 Max-Pool Layers 203

10.3 Max-Pool Layers

Max-pool layers downsample a 3D box to a new one with smaller dimensions.
Typically, you can always place a max-pool layer immediately following a
convolutional layer. Figure 10.1 shows the max-pool layer immediately after
layers C1 and C3. These max-pool layers progressively decrease the size of the
dimensions of the 3D boxes passing through them. This technique can avoid
overfitting (Krizhevsky, Sutskever & Hinton, 2012).

A pooling layer has the following hyper-parameters:

• Spatial Extent (f)

• Stride (s)

Unlike convolutional layers, max-pool layers do not use padding. Additionally,
max-pool layers have no weights, so training does not affect them. These layers
simply downsample their 3D box input.

The 3D box output by a max-pool layer will have a width equal to Equation
10.2:

w2 = w1 − f
s+ 1 (10.2)

The height of the 3D box produced by the max-pool layer is calculated similarly
with Equation 10.3:

h2 = h1 − f
s+ 1 (10.3)

The depth of the 3D box produced by the max-pool layer is equal to the depth
the 3D box received as input.

The most common setting for the hyper-parameters of a max-pool layer
are f =2 and s=2. The spatial extent (f) specifies that boxes of 2x2 will be
scaled down to single pixels. Of these four pixels, the pixel with the maximum
value will represent the 2x2 pixel in the new grid. Because squares of size 4 are
replaced with size 1, 75% of the pixel information is lost. Figure 10.3 shows
this transformation as a 6x6 grid becomes a 3x3:

204 Convolutional Neural Networks

Figure 10.3: Max-pooling (f=2,s=2)

Of course, the above diagram shows each pixel as a single number. A
grayscale image would have this characteristic. For an RGB image, we usu-
ally take the average of the three numbers to determine which pixel has the
maximum value.

10.4 Dense Layers

The final layer type in a LeNET-5 network is a dense layer. This layer type
is exactly the same type of layer as we’ve seen before in feedforward neural
networks. A dense layer connects every element (neuron) in the previous
layer’s output 3D box to each neuron in the dense layer. The resulting vector
is passed through an activation function. LeNET-5 networks will typically use
a ReLU activation. However, we can use a sigmoid activation function; this
technique is less common. A dense layer will typically contain the following
hyper-parameters:

• Neuron Count

• Activation Function

10.5 ConvNets for the MNIST Data Set 205

The neuron count specifies the number of neurons that make up this layer.
The activation function indicates the type of activation function to use. Dense
layers can employ many different kinds of activation functions, such as ReLU,
sigmoid or hyperbolic tangent.

LeNET-5 networks will typically contain several dense layers as their final
layers. The final dense layer in a LeNET-5 actually performs the classification.
There should be one output neuron for each class, or type of image, to classify.
For example, if the network distinguishes between dogs, cats, and birds, there
will be three output neurons. You can apply a final softmax function to the
final layer to treat the output neurons as probabilities. Softmax allows each
neuron to provide the probability of the image representing each class. Because
the output neurons are now probabilities, softmax ensures that they sum to 1.0
(100%). To review softmax, you can reread Chapter 4, “Feedforward Neural
Networks.”

10.5 ConvNets for the MNIST Data Set

In Chapter 6, “Backpropagation Training,” we used the MNIST handwritten
digits as an example of using backpropagation. In Chapter 10, we present
an example about improving our recognition of the MNIST digits, as a deep
convolutional neural network. The convolutional network, being a deep neural
network, will have more layers than the feedforward neural network seen in
Chapter 6. The hyper-parameters for this network are as follows:

• Input: Accepts box of [1,96,96]

• Convolutional Layer: filters=32, filter size=[3,3]

• Max-pool Layer: [2,2]

• Convolutional Layer: filters=64, filter size=[2,2]

• Max-pool Layer: [2,2]

• Convolutional Layer: filters=128, filter size=[2,2]

• Max-pool Layer: [2,2]

206 Convolutional Neural Networks

• Dense Layer: 500 neurons

• Output Layer: 30 neurons

This network uses the very common pattern to follow each convolutional layer
with a max-pool layer. Additionally, the number of filters decreases from the
input to the output layer, thereby allowing a smaller number of basic features,
such as edges, lines, and small shapes to be detected near the input field.
Successive convolutional layers roll up these basic features into larger and
more complex features. Ultimately, the dense layer can map these higher-level
features into each x-coordinate and y-coordinate of the actual 15 digit features.

Training the convolutional neural network takes considerable time, espe-
cially if you are not using GPU processing. As of July 2015, not all frameworks
have equal support of GPU processing. At this time, using Python with a
Theano-based neural network framework, such as Lasange, provides the best
results. Many of the same researchers who are improving deep convolutional
networks are also working with Theano. Thus, they promote it before other
frameworks on other languages.

For this example, we used Theano with Lasange. The book’s example
download may have other languages available for this example as well, depend-
ing on the frameworks available for those languages. Training a convolutional
neural network for digit feature recognition on Theano took less time with a
GPU than a CPU, as a GPU helps considerably for convolutional neural net-
works. The exact amount of performance will vary according to hardware and
platform. The accuracy comparison between the convolutional neural network
and the regular ReLU network is shown here:
Relu :
Best v a l i d l o s s was 0 .068229 at epoch 17 .
I n c o r r e c t 170/10000 (1.7000000000000002%)
ReLU+Conv :
Best v a l i d l o s s was 0 .065753 at epoch 3 .
I n c o r r e c t 150/10000 (1.5%)

If you compare the results from the convolutional neural network to the stan-
dard feedforward neural network from Chapter 6, you will see the convolutional
neural network performed better. The convolutional neural network is capable

10.6 Chapter Summary 207

of recognizing sub-features in the digits to boost its performance over the stan-
dard feedforward neural network. Of course, these results will vary, depending
on the platform used.

10.6 Chapter Summary

Convolutional neural networks are a very active area in the field of computer
vision. They allow the neural network to detect hierarchies of features, such as
lines and small shapes. These simple features can form hierarchies to teach the
neural network to recognize complex patterns composed of the more simple
features. Deep convolutional networks can take considerable processing power.
Some frameworks allow the use of GPU processing to enhance performance.

Yann LeCun introduced the LeNET-5, the most common type of convolu-
tional network. This neural network type is comprised of dense layers, convo-
lutional layers and max-pool layers. The dense layers work exactly the same
way as traditional feedforward networks. Max-pool layers can downsample the
image and remove detail. Convolutional layers detect features in any part of
the image field.

There are many different approaches to determine the best architecture for
a neural network. Chapter 8, “NEAT, CPPN and HyperNEAT,” introduced
a neural network algorithm that could automatically determine the best ar-
chitecture. If you are using a feedforward neural network you will most likely
arrive at a structure through pruning and model selection, which we discuss
in the next chapter.

209

Chapter 11

Pruning and Model Selection

• Pruning a Neural Network

• Model Selection

• Random vs. Grid Search

In previous chapters, we learned that you could better fit the weights of a
neural network with various training algorithms. In effect, these algorithms
adjust the weights of the neural network in order to lower the error of the
neural network. We often refer to the weights of a neural network as the
parameters of the neural network model. Some machine learning models might
have parameters other than weights. For example, logistic regression (which
we discussed in Artificial Intelligence for Humans, Volume 1) has coefficients
as parameters.

When we train the model, the parameters of any machine learning model
change. However, these models also have hyper-parameters that do not change
during training algorithms. For neural networks, the hyper-parameters specify
the architecture of the neural network. Examples of hyper-parameters for
neural networks include the number of hidden layers and hidden neurons.

In this chapter, we will examine two algorithms that can actually modify
or suggest a structure for the neural network. Pruning works by analyzing
how much each neuron contributes to the output of the neural network. If a

210 Pruning and Model Selection

particular neuron’s connection to another neuron does not significantly affect
the output of the neural network, the connection will be pruned. Through
this process, connections and neurons that have only a marginal impact on
the output are removed.

The other algorithm that we introduce in this chapter is model selection.
While pruning starts with an already trained neural network, model selection
creates and trains many neural networks with different hyper-parameters. The
program then selects the hyper-parameters producing the neural network that
achieves the best validation score.

11.1 Understanding Pruning

Pruning is a process that makes neural networks more efficient. Unlike the
training algorithms already discussed in this book, pruning does not increase
the training error of the neural network. The primary goal of pruning is to
decrease the amount of processing required to use the neural network. Addi-
tionally, pruning can sometimes have a regularizing effect by removing com-
plexity from the neural network. This regularization can sometimes decrease
the amount of overfitting in the neural network. This decrease can help the
neural network perform better on data that were not part of the training set.

Pruning works by analyzing the connections of the neural network. The
pruning algorithm looks for individual connections and neurons that can be
removed from the neural network to make it operate more efficiently. By
pruning unneeded connections, the neural network can be made to execute
faster and possibly decrease overfitting. In the next two sections, we will
examine how to prune both connections and neurons.

11.1.1 Pruning Connections

Connection pruning is central to most pruning algorithms. The program an-
alyzes the individual connections between the neurons to determine which
connections have the least impact on the effectiveness of the neural network.
Connections are not the only thing that the program can prune. Analyzing

11.1 Understanding Pruning 211

the pruned connections will reveal that the program can also prune individual
neurons.

11.1.2 Pruning Neurons

Pruning focuses primarily on the connections between the individual neurons
of the neural network. However, to prune individual neurons, we must examine
the connections between each neuron and the other neurons. If one particular
neuron is surrounded entirely by weak connections, there is no reason to keep
that neuron. If we apply the criteria discussed in the previous section, neurons
that have no connections are the end result because the program has pruned
all of the neuron’s connections. Then the program can prune this type of a
neuron.

11.1.3 Improving or Degrading Performance

It is possible that pruning a neural network may improve its performance. Any
modifications to the weight matrix of a neural network will always have some
impact on the accuracy of the recognitions made by the neural network. A
connection that has little or no impact on the neural network may actually
be degrading the accuracy with which the neural network recognizes patterns.
Removing this weak connection may improve the overall output of the neural
network.

Unfortunately, pruning can also decrease the effectiveness of the neural
network. Thus, you must always analyze the effectiveness of the neural network
before and after pruning. Since efficiency is the primary benefit of pruning, you
must be careful to evaluate whether an improvement in the processing time is
worth a decrease in the neural network’s effectiveness. We will evaluate the
overall effectiveness of the neural network both before and after pruning in
one of the programming examples from this chapter. This analysis will give
us an idea of the impact that the pruning process has on the effectiveness of
the neural network.

212 Pruning and Model Selection

11.2 Pruning Algorithm

We will now review exactly how pruning takes place. Pruning works by exam-
ining the weight matrices of a previously trained neural network. The pruning
algorithm will then attempt to remove neurons without disrupting the out-
put of the neural network. Figure 11.1 shows the algorithm used for selective
pruning:

Figure 11.1: Pruning a Neural Network

11.3 Model Selection 213

As you can see, the pruning algorithm has a trial-and-error approach. The
pruning algorithm attempts to remove neurons from the neural network until
it cannot remove additional neurons without degrading the performance of the
neural network.

To begin this process, the selective pruning algorithm loops through each
of the hidden neurons. For each hidden neuron encountered, the program
evaluates the error level of the neural network both with and without the
specified neuron. If the error rate jumps beyond a predefined level, the program
retains the neuron and evaluates the next. If the error rate does not improve
significantly, the program removes the neuron.

Once the program has evaluated all neurons, it repeats the process. This
cycle continues until the program has made one pass through the hidden neu-
rons without removing a single neuron. Once this process is complete, a new
neural network is achieved that performs acceptably close to the original, yet
it has fewer hidden neurons.

11.3 Model Selection

Model selection is the process where the programmer attempts to find a set of
hyper-parameters that produce the best neural network, or other machine
learning model. In this book, we have mentioned many different hyper-
parameters that are the settings that you must provide to the neural network
framework. Examples of neural network hyper-parameters include:

• The number of hidden layers

• The order of the convolutional, pooling, and dropout layers

• The type of activation function

• The number of hidden neurons

• The structure of pooling and convolutional layers

As you’ve read through these chapters that mention hyper-parameters, you’ve
probably been wondering how you know which settings to use. Unfortunately,

214 Pruning and Model Selection

there is no easy answer. If easy methods existed that determine these set-
tings, programmers would have constructed the neural network frameworks
that automatically set these hyper-parameters for you.

While we will provide more insight into hyper-parameters in Chapter 14,
“Architecting Neural Networks,” you will still need to use the model selection
processes described in this chapter. Unfortunately, model selection is very
time-consuming. We spent 90% of our time performing model selection during
our last Kaggle competition. Often, success in modeling is closely related to
the amount of time you have to spend on model selection.

11.3.1 Grid Search Model Selection

Grid search is a trial-and-error, brute-force algorithm. For this technique, you
must specify every combination of the hyper-parameters that you would like
to use. You must be judicious in your selection because the number of search
iterations can quickly grow. Typically, you must specify the hyper-parameters
that you would like to search. This specification might look like the following:

• Hidden Neurons: 2 to 10, step size 2

• Activation Functions: tanh, sigmoid & ReLU

The first item states that the grid search should try hidden neuron counts
between 2 and 10 counting by 2, which results in the following: 2, 4, 6, 8,
and 10 (5 total possibilities.) The second item states that we should also try
the activation functions tanh, sigmoid, and ReLU for each neuron count. This
process results in a total of fifteen iterations because five possibilities times
three possibilities is fifteen total. These possibilities are listed here:
I t e r a t i o n #1: [2] [s igmoid]
I t e r a t i o n #2: [4] [s igmoid]
I t e r a t i o n #3: [6] [s igmoid]
I t e r a t i o n #4: [8] [s igmoid]
I t e r a t i o n #5: [1 0] [s igmoid]
I t e r a t i o n #6: [2] [ReLU]
I t e r a t i o n #7: [4] [ReLU]

11.3 Model Selection 215

I t e r a t i o n #8: [6] [ReLU]
I t e r a t i o n #9: [8] [ReLU]
I t e r a t i o n #10: [1 0] [ReLU]
I t e r a t i o n #11: [2] [tanh]
I t e r a t i o n #12: [4] [tanh]
I t e r a t i o n #13: [6] [tanh]
I t e r a t i o n #14: [8] [tanh]
I t e r a t i o n #15: [1 0] [tanh]

Each set of possibilities is called an axis. These axes rotate through all possible
combinations before they finish. You can visualize this process by thinking of
a car’s odometer. The far left dial (or axis) is spinning the fastest. It counts
between 0 and 9. Once it hits 9 and needs to go to the next number, it forward
back to 0, and the next place, to the left, rolls forward by one. Unless that
next place was also on 9, the rollover continues to the left. At some point, all
digits on the odometer are at 9, and the entire device would roll back over to
0. When this final rollover occurs, the grid search is done.

Most frameworks allow two axis types. The first type is a numeric range
with a step. The second type is a list of values, like the activation functions
above. The following Javascript example allows you to try your own sets of
axes to see the number of iterations produced:

http://www.heatonresearch.com/aifh/vol3/grid_iter.html
Listing 11.1 shows the pseudocode necessary to roll through all iterations

of several sets of values:

Listing 11.1: Grid Search
The v a r i a b l e axes con ta ins a l i s t o f each a x i s .
Each axes (in axes) i s a l i s t o f p o s s i b l e va l u e s
fo r t h a t a x i s .
Current index o f each a x i s i s zero , c r ea t e an array
of ze ros .
indexes = ze ro s (len (axes))
done = f a l s e
while not done :
Prepare vec to r o f current i t e r a t i o n Š s
hyper−parameters .

i t e r a t i o n = []
for i from 0 to len (axes)

i t e r a t i o n . add (axes [i] [indexes [i]])

http://www.heatonresearch.com/aifh/vol3/grid_iter.html

216 Pruning and Model Selection

Perform one i t e r a t i o n , pas s ing in the hyper−parameters
t h a t are s t o r ed in the i t e r a t i o n l i s t . This f unc t i on
shou ld t r a i n the neura l network accord ing to the
hyper−parameters and keep note o f the b e s t t r a ined
network so f a r .

p e r f o r m i t e r a t i o n (i t e r a t i o n)
Rotate the axes forward one unit , l i k e a carŠs
odometer .

indexes [0] = indexes [0] + 1 ;
var counterIdx = 0 ;

r o l l forward the o ther p laces , i f needed
while not done and indexes [counterIdx]>=

len (axes [counterIdx]) :
indexes [counterIdx] = 0
counterIdx = counterIdx + 1
i f counterIdx>=len (axes) :

done = true
else :

indexes [counterIdx] = indexes [counterIdx] + 1

The code above uses two loops to pass through every possible set of the
hyper-parameters. The first loop continues while the program is still pro-
ducing hyper-parameters. Each time through, this loop increases the first
hyper-parameter to the next value. The second loop detects if the first hyper-
parameter has rolled over. The inner loop keeps moving forward to the next
hyper-parameter until no more rollovers occur. Once all the hyper-parameters
roll over, the process is done.

As you can see, the grid search can quickly result in a large number of
iterations. Consider if you wished to search for the optimal number of hidden
neurons on five layers, where you allowed up to 200 neurons on each level. This
value would be equal to 200 multiplied by itself five times, or 200 to the fifth
power. This process results in 320 billion iterations. Because each iteration
involves training a neural network, iterations can take minutes, hours or even
days to execute.

When performing grid searches, multi-threading and grid processing can
be beneficial. Running the iterations through a thread pool can greatly speed
up the search. The thread pool should have a size equal to the number of cores
on the computer’s machine. This trait allows a machine with eight cores to
work on eight neural networks simultaneously. The training of the individual

11.3 Model Selection 217

models must be single threaded when you run the iterations simultaneously.
Many frameworks will use all available cores to train a single neural network.
When you have a large number of neural networks to train, you should always
train several neural networks in parallel, running them one a time so that each
network uses the machines cores.

11.3.2 Random Search Model Selection

It is also possible to use a random search for model selection. Instead of
systematically trying every hyper-parameter combination, the random search
method chooses random values for hyper-parameters. For numeric ranges, you
no longer need to specify a step value, the random model selection will choose
a continuous range of floating point numbers between your specified beginning
and ending points. For a random search, the programmer typically specifies
either a time or an iteration limit. The following shows a random search, using
the same axes as above, but it is limited to ten iterations:
I t e r a t i o n #1: [3 . 298266736790538] [s igmoid]
I t e r a t i o n #2: [9 . 569985574809834] [ReLU]
I t e r a t i o n #3: [1 . 241154231596738] [s igmoid]
I t e r a t i o n #4: [9 . 140498645836487] [s igmoid]
I t e r a t i o n #5: [8 . 041758658131585] [tanh]
I t e r a t i o n #6: [2 . 363519841339439] [ReLU]
I t e r a t i o n #7: [9 . 7 2388393455185] [tanh]
I t e r a t i o n #8: [3 . 411276006139815] [tanh]
I t e r a t i o n #9: [3 . 1166220877785236] [s igmoid]
I t e r a t i o n #10: [8 . 559433702612296] [s igmoid]

As you can see, the first axis, which is the hidden neuron count, is now taking
on floating-point values. You can solve this problem by rounding the neuron
count to the nearest whole number. It is also advisable to avoid retesting
the same hyper-parameters more than once. As a result, the program should
keep a list of previously tried hyper-parameters so that it doesn’t repeat any
hyper-parameters that were with a small range of a previously tried set.

The following URL uses Javascript to show random search in action:
http://www.heatonresearch.com/aifh/vol3/random_iter.html

http://www.heatonresearch.com/aifh/vol3/random_iter.html

218 Pruning and Model Selection

11.3.3 Other Model Selection Techniques

Model selection is a very active area of research, and, as a result, many inno-
vative ways exist to perform it. Think of the hyper-parameters as a vector of
values and the process of finding the best neural network score for those hyper-
parameters as an objective function. You can consider these hyper-parameters
as an optimization problem. We have previously examined many optimization
algorithms in earlier volumes of this book series. These algorithms are the
following:

• Ant Colony Optimization (ACO)

• Genetic Algorithms

• Genetic Programming

• Hill Climbing

• Nelder-Mead

• Particle Swarm Optimization (PSO)

• Simulated Annealing

We examined many of these algorithms in detail in Volumes 1 and 2 of Artificial
Intelligence for Humans. Although the list of algorithms is long, the reality is
that most of these algorithms are not suited for model selection because the
objective function for model selection is computationally expensive. It might
take minutes, hours or even days to train a neural network and determine how
well a given set of hyper-parameters can train a neural network.

Nelder-Mead and sometimes hill climbing turn out to be the best options
if you wish to apply an optimization function to model selection. These al-
gorithms attempt to minimize calls to the objective function. Calls to the
objective function are very expensive for a parameter search because a neural
network must be trained. A good technique for optimization is to generate
a set of hyper-parameters to use as a starting point for Nelder-Mead and al-
low Nelder-Mead to improve these hyper-parameters. Nelder-Mead is a good

11.4 Chapter Summary 219

choice for a hyper-parameter search because it results in a relatively small
number of calls to the objective function.

Model selection is a very common part of Kaggle data science competitions.
Based on competition discussions and reports, most participants use grid and
random searches for model selection.. Nelder-Mead is also popular. Another
technique that is gaining in popularity is the use of Bayesian optimization, as
described by Snoek, Larochelle, Hugo & Adams (2012). An implementation
of this algorithm, written in Python, is called Spearmint, and you can find it
at the following URL:

https://github.com/JasperSnoek/spearmint
Bayesian optimization is a relatively new technique for model selection on

which we have only recently conducted research. Therefore, this current book
does not contain a more profound examination of it. Future editions may
include more information of this technique.

11.4 Chapter Summary

As you learned in this chapter, it is possible to prune neural networks. Pruning
a neural network removes connections and neurons in order to make the neural
network more efficient. Execution speed, number of connections, and error
are all measures of efficiency. Although neural networks must be effective at
recognizing patterns, efficiency is the main goal of pruning. Several different
algorithms can prune a neural network. In this chapter, we examined two of
these algorithms. If your neural network is already operating sufficiently fast,
you must evaluate whether the pruning is justified. Even when efficiency is
important, you must weigh the trade-offs between efficiency and a reduction
in the effectiveness of your neural network.

Model selection plays a significant role in neural network development.
Hyper-parameters are settings such as hidden neuron, layer count, and acti-
vation function selection. Model selection is the process of finding the set of
hyper-parameters that will produce the best-trained neural network. A variety
of algorithms can search through the possible settings of the hyper-parameters
and find the best set.

Pruning can sometimes lead to a decrease in the tendency for neural net-

https://github.com/JasperSnoek/spearmint

220 Pruning and Model Selection

works to overfit. This reduction in overfitting is typically only a byproduct of
the pruning process. Algorithms that reduce overfitting are called regulariza-
tion algorithms. Although pruning will sometimes have a regularizing effect,
an entire group of algorithms, called regularization algorithms, exist to reduce
overfitting. We will focus exclusively on these algorithms in the next chapter.

11.4 Chapter Summary 221

223

Chapter 12

Dropout and Regularization

• Regularization

• L1 & L2 Regularization

• Dropout Layers

Regularization is a technique that reduces overfitting, which occurs when neu-
ral networks attempt to memorize training data, rather than learn from it.
Humans are capable of overfitting as well. Before we examine the ways that a
machine accidentally overfits, we will first explore how humans can suffer from
it.

Human programmers often take certification exams to show their compe-
tence in a given programming language. To help prepare for these exams, the
test makers often make practice exams available. Consider a programmer who
enters a loop of taking the practice exam, studying more, and then taking the
practice exam again. At some point, the programmer has memorized much
of the practice exam, rather than learning the techniques necessary to figure
out the individual questions. The programmer has now overfit to the practice
exam. When this programmer takes the real exam, his actual score will likely
be lower than what he earned on the practice exam.

A computer can overfit as well. Although a neural network received a high
score on its training data, this result does not mean that the same neural

224 Dropout and Regularization

network will score high on data that was not inside the training set. Regu-
larization is one of the techniques that can prevent overfitting. A number of
different regularization techniques exist. Most work by analyzing and poten-
tially modifying the weights of a neural network as it trains.

12.1 L1 and L2 Regularization

L1 and L2 regularization are two common regularization techniques that can
reduce the effects of overfitting (Ng, 2004). Both of these algorithms can either
work with an objective function or as a part of the backpropagation algorithm.
In both cases the regularization algorithm is attached to the training algorithm
by adding an additional objective.

Both of these algorithms work by adding a weight penalty to the neural
network training. This penalty encourages the neural network to keep the
weights to small values. Both L1 and L2 calculate this penalty differently. For
gradient-descent-based algorithms, such as backpropagation, you can add this
penalty calculation to the calculated gradients. For objective-function-based
training, such as simulated annealing, the penalty is negatively combined with
the objective score.

Both L1 and L2 work differently in the way that they penalize the size
of a weight. L1 will force the weights into a pattern similar to a Gaussian
distribution; the L2 will force the weights into a pattern similar to a Laplace
distribution, as demonstrated by Figure 12.1:

12.1 L1 and L2 Regularization 225

Figure 12.1: L1 vs L2

As you can see, L1 algorithm is more tolerant of weights further from 0,
whereas the L2 algorithm is less tolerant. We will highlight other important
differences between L1 and L2 in the following sections. You also need to note
that both L1 and L2 count their penalties based only on weights; they do not
count penalties on bias values.

12.1.1 Understanding L1 Regularization

You should use L1 regularization to create sparsity in the neural network. In
other words, the L1 algorithm will push many weight connections to near 0.
When a weight is near 0, the program drops it from the network. Dropping
weighted connections will create a sparse neural network.

Feature selection is a useful byproduct of sparse neural networks. Features
are the values that the training set provides to the input neurons. Once all the
weights of an input neuron reach 0, the neural network training determines
that the feature is unnecessary. If your data set has a large number of input
features that may not be needed, L1 regularization can help the neural network
detect and ignore unnecessary features.

Equation 12.1 shows the penalty calculation performed by L1:

226 Dropout and Regularization

E1 = λ1
∑
w

|w| (12.1)

Essentially, a programmer must balance two competing goals. He or she must
decide the greater value of achieving a low score for the neural network or
regularizing the weights. Both results have value, but the programmer has
to choose the relative importance. If regularization is the main goal, the λ
(lambda) value determines that the L1 objective is more important than the
neural network’s error. A value of 0 means L1 regularization is not considered
at all. In this case, a low network error would have more importance. A value
of 0.5 means L1 regularization is half as important as the error objective.
Typical L1 values are below 0.1 (10%).

The main calculation performed by L1 is the summing of the absolute
values (as indicated by the vertical bars) of all the weights. The bias values
are not summed.

If you are using an optimization algorithm, such as simulated annealing,
you can simply combine the value returned by Equation 12.1 to the score. You
should combine this value to the score in such a way so that it has a negative
effect. If you are trying to minimize the score, then you should add the L1
value. Similarly, if you are trying to maximize the score, then you should
subtract the L1 value.

If you are using L1 regularization with a gradient-descent-based training
algorithm, such as backpropagation, you need to use a slightly different error
term, as shown by Equation 12.2:

E1 = λ1

n

∑
w

|w| (12.2)

Equation 12.2 is nearly the same as Equation 12.1 except that we divide by n.
The value n represents the number of training set evaluations. For example,
if there were 100 training set elements and three output neurons, n would be
300. We derive this number because the program has three values to evaluate
for each of those 100 elements. It is necessary to divide by n because the
program applies Equation 12.2 at every training evaluation. This characteristic
contrasts with Equation 12.1, which is applied once per training iteration.

12.1 L1 and L2 Regularization 227

To use Equation 12.2, we need to take its partial derivative with respect
to the weight. Equation 12.3 shows the partial derivative of Equation 12.2:

∂

∂w
E1 = λ1

n
sgn(w) (12.3)

To use this gradient, we add this value to every weight gradient calculated
by the gradient-descent algorithm. This addition is only performed for weight
values; the biases are left alone.

12.1.2 Understanding L2 Regularization

You should use L2 regularization when you are less concerned about creating
a space network and are more concerned about low weight values. The lower
weight values will typically lead to less overfitting.

Equation 12.4 shows the penalty calculation performed by L2:

E2 = λ2
∑
w

w2 (12.4)

Like the L1 algorithm, the λ (lambda) value determines how important the
L2 objective is compared to the neural network’s error. Typical L2 values are
below 0.1 (10%). The main calculation performed by L2 is the summing of
the squares of all of the weights. The bias values are not summed.

If you are using an optimization algorithm, such as simulated annealing,
you can simply combine the value returned by Equation 12.4 to the score.
You should combine this value with the score in such a way so that it has a
negative effect. If you are trying to minimize the score, then you should add
the L2 value. Similarly, if you are trying to maximize the score, then you
should subtract the L2 value.

If you are using L2 regularization with a gradient-descent-based training
algorithm, such as backpropagation, you need to use a slightly different error
term, as shown by Equation 12.5:

E2 = λ2

n

∑
w

w2 (12.5)

228 Dropout and Regularization

Equation 12.5 is nearly the same as Equation 12.4, except that, unlike L1, we
take the squares of the weights. To use Equation 12.5, we need to take the
partial derivative with respect to the weight. Equation 12.6 shows the partial
derivative of Equation 12.6:

∂

∂w
E2 = λ2

n
w (12.6)

To use this gradient, you need to add this value to every weight gradient
calculated by the gradient-descent algorithm. This addition is only performed
on weight values; the biases are left alone.

12.2 Dropout Layers

Hinton, Srivastava, Krizhevsky, Sutskever, & Salakhutdinov (2012) introduced
the dropout regularization algorithm. Although dropout works in a different
way than L1 and L2, it accomplishes the same goal–the prevention of over-
fitting. However, the algorithm goes about the task by actually removing
neurons and connections–at least temporarily. Unlike L1 and L2, no weight
penalty is added. Dropout does not directly seek to train small weights.

Dropout works by causing hidden neurons of the neural network to be
unavailable during part of the training. Dropping part of the neural network
causes the remaining portion to be trained to still achieve a good score even
without the dropped neurons. This decreases coadaption between neurons,
which results in less overfitting.

12.2.1 Dropout Layer

Most neural network frameworks implement dropout as a separate layer. Dropout
layers function as a regular, densely connected neural network layer. The only
difference is that the dropout layers will periodically drop some of their neu-
rons during training. You can use dropout layers on regular feedforward neural
networks. In fact, they can also become layers in convolutional LeNET-5 net-
works like we studied in Chapter 10, “Convolutional Neural Networks.”

12.2 Dropout Layers 229

The usual hyper-parameters for a dropout layer are the following:

• Neuron Count

• Activation Function

• Dropout Probability

The neuron count and activation function hyper-parameters work exactly the
same way as their corresponding parameters in the dense layer type mentioned
in Chapter 10, “Convolutional Neural Networks.” The neuron count simply
specifies the number of neurons in the dropout layer. The dropout probability
indicates the likelihood of a neuron dropping out during the training iteration.
Just as it does for a dense layer, the program specifies an activation function
for the dropout layer.

12.2.2 Implementing a Dropout Layer

The program implements a dropout layer as a dense layer that can eliminate
some of its neurons. Contrary to popular belief about the dropout layer, the
program does not permanently remove these discarded neurons. A dropout
layer does not lose any of its neurons during the training process, and it will
still have exactly the same number of neurons after training. In this way, the
program only temporarily masks the neurons rather than dropping them.

Figure 12.2 shows how a dropout layer might be situated with other layers:

230 Dropout and Regularization

Figure 12.2: Dropout Layer

The discarded neurons and their connections are shown as dashed lines.
The input layer has two input neurons as well as a bias neuron. The second
layer is a dense layer with three neurons as well as a bias neuron. The third
layer is a dropout layer with six regular neurons even though the program
has dropped 50% of them. While the program drops these neurons, it neither
calculates nor trains them. However, the final neural network will use all of
these neurons for the output. As previously mentioned, the program only
temporarily discards the neurons.

12.2 Dropout Layers 231

During subsequent training iterations, the program chooses different sets
of neurons from the dropout layer. Although we chose a probability of 50%
for dropout, the computer will not necessarily drop three neurons. It is as if
we flipped a coin for each of the dropout candidate neurons to choose if that
neuron was dropped out. You must know that the program should never drop
the bias neuron. Only the regular neurons on a dropout layer are candidates.

The implementation of the training algorithm influences the process of
discarding neurons. The dropout set frequently changes once per training it-
eration or batch. The program can also provide intervals where all neurons are
present. Some neural network frameworks give additional hyper-parameters
to allow you to specify exactly the rate of this interval.

Why dropout is capable of decreasing overfitting is a common question.
The answer is that dropout can reduce the chance of a codependency devel-
oping between two neurons. Two neurons that develop a codependency will
not be able to operate effectively when one is dropped out. As a result, the
neural network can no longer rely on the presence of every neuron, and it
trains accordingly. This characteristic decreases its ability to memorize the
information presented to it, thereby forcing generalization.

Dropout also decreases overfitting by forcing a bootstrapping process upon
the neural network. Bootstrapping is a very common ensemble technique.
We will discuss ensembling in greater detail in Chapter 16, “Modeling with
Neural Networks.” Basically, ensembling is a technique of machine learning
that combines multiple models to produce a better result than those achieved
by individual models. Ensemble is a term that originates from the musical
ensembles in which the final music product that the audience hears is the
combination of many instruments.

232 Dropout and Regularization

Bootstrapping is one of the most simple ensemble techniques. The pro-
grammer using bootstrapping simply trains a number of neural networks to
perform exactly the same task. However, each of these neural networks will
perform differently because of some training techniques and the random num-
bers used in the neural network weight initialization. The difference in weights
causes the performance variance. The output from this ensemble of neural net-
works becomes the average output of the members taken together. This pro-
cess decreases overfitting through the consensus of differently trained neural
networks.

Dropout works somewhat like bootstrapping. You might think of each
neural network that results from a different set of neurons being dropped
out as an individual member in an ensemble. As training progresses, the
program creates more neural networks in this way. However, dropout does not
require the same amount of processing as does bootstrapping. The new neural
networks created are temporary; they exist only for a training iteration. The
final result is also a single neural network, rather than an ensemble of neural
networks to be averaged together.

12.3 Using Dropout

In this chapter, we will continue to evolve the book’s MNIST handwritten
digits example. We examined this data set in the book introduction and used
it in several examples.

The example for this chapter uses the training set to fit a dropout neural
network. The program subsequently evaluates the test set on this trained
network to view the results. Both dropout and non-dropout versions of the
neural network have results to examine.

The dropout neural network used the following hyper-parameters:

• Activation Function: ReLU

• Input Layer: 784 (28x28)

• Hidden Layer 1: 1000

12.3 Using Dropout 233

• Dropout Layer: 500 units, 50%

• Hidden Layer 2: 250

• Output Layer: 10 (because there are 10 digits)

We selected the above hyper-parameters through experimentation. By round-
ing the number of input neurons up to the next even unit, we chose a first
hidden layer of 1000. The next three layers constrained this amount by half
each time. Placing the dropout layer between the two hidden layers provided
the best improvement in the error rate. We also tried placing it both be-
fore hidden layer 1 and after hidden layer 2. Most of the overfitting occurred
between the two hidden layers.

We used the following hyper-parameters for the regular neural network.
This process is essentially the same as the dropout network except that an
additional hidden layer replaces the dropout layer.

• Activation Function: ReLU

• Input Layer: 784 (28x28)

• Hidden Layer 1: 1000

• Hidden Layer 2: 500

• Hidden Layer 3: 250

• Output Layer: 10 (because there are 10 digits)

The results are shown here:
Relu :
Best v a l i d l o s s was 0 .068229 at epoch 17 .
I n c o r r e c t 170/10000 (1.7000000000000002%)
ReLU+Dropout :
Best v a l i d l o s s was 0 .065753 at epoch 5 .
I n c o r r e c t 120/10000 (1.2%)

234 Dropout and Regularization

As you can see, dropout neural network achieved a better error rate than the
ReLU only neural network from earlier in the book. By reducing the amount
of overfitting, the dropout network got a better score. You should also notice
that, although the non-dropout network did achieve a better training score,
this result is not good. It indicates overfitting. Of course, these results will
vary, depending on the platform used.

12.4 Chapter Summary

We introduced several regularization techniques that can reduce overfitting.
When the neural network memorizes the input and expected output, overfit-
ting occurs because the program has not learned to generalize. Many different
regularization techniques can force the neural network to learn to generalize.
We examined L1, L2, and dropout. L1 and L2 work similarly by imposing
penalties for weights that are too large. The purpose of these penalties is to
reduce complexity in the neural network. Dropout takes an entirely different
approach by randomly removing various neurons and forcing the training to
continue with a partial neural network.

The L1 algorithm penalizes large weights and forces many of the weights to
approach 0. We consider the weights that contain a zero value to be dropped
from the neural network. This reduction produces a sparse neural network.
If all weighted connections between an input neuron and the next layer are
removed, you can assume that the feature connected to that input neuron
is unimportant. Feature selection is choosing input features based on their
importance to the neural network. The L2 algorithm penalizes large weights,
but it does not tend to produce neural networks that are as sparse as those
produced by the L1 algorithm.

Dropout randomly drops neurons in a designated dropout layer. The neu-
rons that were dropped from the network are not gone as they were in pruning.
Instead, the dropped neurons are temporarily masked from the neural network.
The set of dropped neurons changes during each training iteration. Dropout
forces the neural network to continue functioning when neurons are removed.
This makes it difficult for the neural network to memorize and overfit.

So far, we have explored only feedforward neural networks in this volume.

12.4 Chapter Summary 235

In this type of network, the connections only move forward from the input
layer to hidden layers and ultimately to the output layer. Recurrent neural
networks allow backward connections to previous layers. We will analyze this
type of neural network in the next chapter.

Additionally, we have focused primarily on using neural networks to recog-
nize patterns. We can also teach neural networks to predict future trends. By
providing a neural network with a series of time-based values, it can predict
subsequent values. In the next chapter, we will also demonstrate predictive
neural networks. We refer to this type of neural network as a temporal neural
network. Recurrent neural networks can often make temporal predictions.

237

Chapter 13

Time Series and Recurrent
Networks

• Time Series

• Elman Networks

• Jordan Networks

• Deep Recurrent Networks

In this chapter, we will examine time series encoding and recurrent networks,
two topics that are logical to put together because they are both methods
for dealing with data that spans over time. Time series encoding deals with
representing events that occur over time to a neural network. There are many
different methods to encode data that occur over time to a neural network.
This encoding is necessary because a feedforward neural network will always
produce the same output vector for a given input vector. Recurrent neural
networks do not require encoding of time series data because they are able to
automatically handle data that occur over time.

The variation in temperature during the week is an example of time series
data. For instance, if we know that today’s temperature is 25 degrees, and
tomorrow’s temperature is 27 degrees, the recurrent neural networks and time
series encoding provide another option to predict the correct temperature for

238 Time Series and Recurrent Networks

the week. Conversely, a traditional feedforward neural network will always
respond with the same output for a given input. If a feedforward neural
network is trained to predict tomorrow’s temperature, it should respond 27 for
25. The fact that it will always output 27 when given 25 might be a hindrance
to its predictions. Surely the temperature of 27 will not always follow 25. It
would be better for the neural network to consider the temperatures for a series
of days before the day being predicted. Perhaps the temperature over the last
week might allow us to predict tomorrow’s temperature. Therefore, recurrent
neural networks and time series encoding represent two different approaches
to the problem of representing data over time to a neural network.

So far the neural networks that we’ve examined have always had forward
connections. The input layer always connects to the first hidden layer. Each
hidden layer always connects to the next hidden layer. The final hidden layer
always connects to the output layer. This manner to connect layers is the rea-
son that these networks are called “feedforward.” Recurrent neural networks
are not so rigid, as backward connections are also allowed. A recurrent con-
nection links a neuron in a layer to either a previous layer or the neuron itself.
Most recurrent neural network architectures maintain state in the recurrent
connections. Feedforward neural networks don’t maintain any state. A recur-
rent neural network’s state acts as a sort of short-term memory for the neural
network. Consequently, a recurrent neural network will not always produce
the same output for a given input.

13.1 Time Series Encoding

As we saw in previous chapters, neural networks are particularly good at rec-
ognizing patterns, which helps them predict future patterns in data. We refer
to a neural network that predicts future patterns as a predictive, or temporal,
neural network. These predictive neural networks can anticipate future events,
such as stock market trends and sun spot cycles.

Many different kinds of neural networks can predict. In this section, the
feedforward neural network will attempt to learn patterns in data so it can
predict future values. Like all problems applied to neural networks, prediction
is a matter of intelligently determining how to configure input and interpret

13.1 Time Series Encoding 239

output neurons for a problem. Because the type of feedforward neural networks
in this book always produce the same output for a given input, we need to
make sure that we encode the input correctly.

A wide variety of methods can encode time series data for a neural net-
work. The sliding window algorithm is one of the simplest and most popular
encoding algorithms. However, more complex algorithms allow the following
considerations:

• Weighting older values as less important than newer

• Smoothing/averaging over time

• Other domain-specific (e.g. finance) indicators

We will focus on the sliding window algorithm encoding method for time series.
The sliding window algorithm works by dividing the data into two windows
that represent the past and the future. You must specify the sizes of both
windows. For example, if you want to predict future prices with the daily
closing price of a stock, you must decide how far into the past and future that
you wish to examine. You might want to predict the next two days using the
last five closing prices. In this case, you would have a neural network with five
input neurons and two output neurons.

13.1.1 Encoding Data for Input and Output Neurons

Consider a simple series of numbers, such as the sequence shown here:
1 , 2 , 3 , 4 , 3 , 2 , 1 , 2 , 3 , 4 , 3 , 2 , 1

A neural network that predicts numbers from this sequence might use three
input neurons and a single output neuron. The following training set has a
prediction window of size 1 and a past window size of 3:
[1 , 2 , 3] −> [4]
[2 , 3 , 4] −> [3]
[3 , 4 , 3] −> [2]
[4 , 3 , 2] −> [1]

240 Time Series and Recurrent Networks

As you can see, the neural network is prepared to receive several data samples
in a sequence. The output neuron then predicts how the sequence will continue.
The idea is that you can now feed any sequence of three numbers, and the
neural network will predict the fourth number. Each data point is called a
time slice. Therefore, each input neuron represents a known time slice. The
output neurons represent future time slices.

It is also possible to predict more than one value into the future. The
following training set has a prediction window of size 2 and a past window size
of 3:
[1 , 2 , 3] −> [4 , 3]
[2 , 3 , 4] −> [3 , 2]
[3 , 4 , 3] −> [2 , 1]
[4 , 3 , 2] −> [1 , 2]

The last two examples have only a single stream of data. It is possible to use
multiple streams of data to predict. For example, you might predict the price
with the price of a stock and its volume. Consider the following two streams:
Stream #1: 1 , 2 , 3 , 4 , 3 , 2 , 1 , 2 , 3 , 4 , 3 , 2 , 1
Stream #2: 10 , 20 , 30 , 40 , 30 , 20 , 10 , 20 , 30 , 40 , 30 , 20 , 10

You can predict stream #1 with stream #1 and #2. You simply need to add
the stream #2 values next to the stream #1 values. A training set can perform
this calculation. The following set shows a prediction window of size 1 and a
past window size of 3:
[1 , 1 0 , 2 , 2 0 , 3 , 3 0] −> [4]
[2 , 2 0 , 3 , 3 0 , 4 , 4 0] −> [3]
[3 , 3 0 , 4 , 4 0 , 3 , 3 0] −> [2]
[4 , 4 0 , 3 , 3 0 , 2 , 2 0] −> [1]

This same technique works for any number of streams. In this case, stream #1
helps to predict itself. For example, you can use the stock prices of IBM and
Apple to predict Microsoft. This technique uses three streams. The stream
that we’re predicting doesn’t need to be among the streams providing the data
to form the prediction.

13.1 Time Series Encoding 241

13.1.2 Predicting the Sine Wave

The example in this section is relatively simple. We present a neural network
that predicts the sine wave, which is mathematically predictable. However,
programmers can easily understand the sine wave, and it varies over time.
These qualities make it a good introduction to predictive neural networks.

You can see the sine wave by plotting the trigonometric sine function.
Figure 13.1 shows the sine wave:

Figure 13.1: The sine wave

The sine wave function trains the neural network. Backpropagation will
adjust the weights to emulate the sine wave. When you first execute the sine
wave example, you will see the results of the training process. Typical output
from the sine wave predictor’s training process follows:
I t e r a t i o n #1 Error :0 .48120350975475823 I t e r a t i o n #2 Error :
0 .36753445768855236 I t e r a t i o n #3 Error :0 .3212066601426759
I t e r a t i o n #4 Error :0 .2952410514715732 I t e r a t i o n #5 Error :
0 .2780102928778258 I t e r a t i o n #6 Error :0 .26556861969786527
I t e r a t i o n #7 Error :0 .25605359706505776 I t e r a t i o n #8 Er236
Int roduc t i on to Neural Networks with Java , Second Edit ion
ror :0 .24842242500053566 I t e r a t i o n #9 Error :0 .24204767544134156

I t e r a t i o n
#10 Error :0 .23653845782593882
. . .

242 Time Series and Recurrent Networks

I t e r a t i o n #4990 Error :0 .02319397662897425 I t e r a t i o n #4991 Error :
0 .02319310934886356 I t e r a t i o n #4992 Error :0 .023192242246688515
I t e r a t i o n #4993 Error :0 .02319137532183077 I t e r a t i o n #4994 Error :
0 .023190508573672858 I t e r a t i o n #4995 Error :0 .02318964200159761
I t e r a t i o n #4996 Error :0 .02318877560498862 I t e r a t i o n #4997 Error :
0 .02318790938322986 I t e r a t i o n #4998 Error :0 .023187043335705867
I t e r a t i o n #4999 Error :0 .023186177461801745

In the beginning, the error rate is fairly high at 48%. By the second iteration,
this rate quickly begins to fall to 36.7%. By the time the 4,999th iteration has
occurred, the error rate has fallen to 2.3%. The program is designed to stop
before hitting the 5,000th iteration. This succeeds in reducing the error rate
to less than 0.03.

Additional training would produce a better error rate; however, by limiting
the iterations, the program is able to finish in only a few minutes on a regular
computer. This program took about two minutes to execute on an Intel I7
computer.

Once the training is complete, the sine wave is presented to the neural
network for prediction. You can see the output from this prediction here:
5 : Actual =0.76604: Pred ic ted =0.7892166200864351: D i f f e r e n c e =2.32% 6 :A
c tua l =0.86602: Pred icted =0.8839210963512845: D i f f e r e n c e =1.79% 7 : Ac
tua l =0.93969: Pred icted =0.934526031234053: D i f f e r e n c e =0.52% 8 : Act
ual =0.9848: Pred ic ted =0.9559577688326862: D i f f e r e n c e =2.88% 9 : Actu
a l =1.0 : Pred ic ted =0.9615566601973113: D i f f e r e n c e =3.84% 10 : Actual=
0 . 9 8 4 8 : Pred ic ted =0.9558060932656686: D i f f e r e n c e =2.90% 11 : Actual=
0 . 93969 : Pred ic ted =0.9354447787244102: D i f f e r e n c e =0.42% 12 : Actual
=0.86602: Pred icted =0.8894014978439005: D i f f e r e n c e =2.34% 13 : Actua
l =0.76604: Pred icted =0.801342405700056: D i f f e r e n c e =3.53% 14 : Actua
l =0.64278: Pred icted =0.6633506809125252: D i f f e r e n c e =2.06% 15 : Actu
a l =0.49999: Pred ic ted =0.4910483600917853: D i f f e r e n c e =0.89% 16 : Act
ual =0.34202: Pred ic ted =0.31286152780645105: D i f f e r e n c e =2.92% 17 :A
c tua l =0.17364: Pred icted =0.14608325263568134: D i f f e r e n c e =2.76%
18 : Actual =0.0 : Pred ic ted =−0.008360016796238434: D i f f e r e n c e =0.84%
19 : Actual =−0.17364: Pred ic ted =−0.15575381460132823: D i f f e r e n c e =1.79%
20 : Actual =−0.34202: Pred ic ted =−0.3021775158559559: D i f f e r e n c e =3.98%
. . .
490 : Actual =−0.64278: Pred ic ted =−0.6515076637590029: D i f f e r e n c e =0.87%
491 : Actual =−0.76604: Pred ic ted =−0.8133333939237001: D i f f e r e n c e =4.73%
492 : Actual =−0.86602: Pred ic ted =−0.9076496572125671: D i f f e r e n c e =4.16%
493 : Actual =−0.93969: Pred ic ted =−0.9492579517460149: D i f f e r e n c e =0.96%

13.2 Simple Recurrent Neural Networks 243

494 : Actual =−0.9848: Pred icted =−0.9644567437192423: D i f f e r e n c e =2.03%
495 : Actual =−1.0: Pred ic ted =−0.9664801515670861: D i f f e r e n c e =3.35%
496 : Actual =−0.9848: Pred icted =−0.9579489752650393: D i f f e r e n c e =2.69%
497 : Actual =−0.93969: Pred ic ted =−0.9340105440194074: D i f f e r e n c e =0.57%
498 : Actual =−0.86602: Pred ic ted =−0.8829925066754494: D i f f e r e n c e =1.70%
499 : Actual =−0.76604: Pred ic ted =−0.7913823031308845: D i f f e r e n c e =2.53%

As you can see, we present both the actual and predicted values for each
element. We trained the neural network for the first 250 elements; however,
the neural network is able to predict beyond the first 250. You will also notice
that the difference between the actual values and the predicted values rarely
exceeds 3%.

Sliding window is not the only way to encode time series. Other time
series encoding algorithms can be very useful for specific domains. For exam-
ple, many technical indicators exist that help to find patterns in the value of
securities such as stocks, bonds, and currency pairs.

13.2 Simple Recurrent Neural Networks

Recurrent neural networks do not force the connections to flow only from one
layer to the next, from input layer to output layer. A recurrent connection
occurs when a connection is formed between a neuron and one of the following
other types of neurons:

• The neuron itself

• A neuron on the same level

• A neuron on a previous level

Recurrent connections can never target the input neurons or the bias neurons.

The processing of recurrent connections can be challenging. Because the
recurrent links create endless loops, the neural network must have some way to
know when to stop. A neural network that entered an endless loop would not
be useful. To prevent endless loops, we can calculate the recurrent connections
with the following three approaches:

244 Time Series and Recurrent Networks

• Context neurons

• Calculating output over a fixed number of iterations

• Calculating output until neuron output stabilizes

We refer to neural networks that use context neurons as a simple recurrent
network (SRN). The context neuron is a special neuron type that remembers
its input and provides that input as its output the next time that we calculate
the network. For example, if we gave a context neuron 0.5 as input, it would
output 0. Context neurons always output 0 on their first call. However, if
we gave the context neuron a 0.6 as input, the output would be 0.5. We
never weight the input connections to a context neuron, but we can weight
the output from a context neuron just like any other connection in a network.
Figure 13.2 shows a typical context neuron:

Figure 13.2: Context Neuron

Context neurons allow us to calculate a neural network in a single feed-
forward pass. Context neurons usually occur in layers. A layer of context
neurons will always have the same number of context neurons as neurons in
its source layer, as demonstrated by Figure 13.3:

13.2 Simple Recurrent Neural Networks 245

Figure 13.3: Context Layer

As you can see from the above layer, two hidden neurons that are labeled
hidden 1 and hidden 2 directly connect to the two context neurons. The
dashed lines on these connections indicate that these are not weighted connec-
tions. These weightless connections are never dense. If these connections were
dense, hidden 1 would be connected to both hidden 1 and hidden 2. However,
the direct connection simply joins each hidden neuron to its corresponding
context neuron. The two context neurons form dense, weighted connections
to the two hidden neurons. Finally, the two hidden neurons also form dense
connections to the neurons in the next layer. The two context neurons would
form two connections to a single neuron in the next layer, four connections to
two neurons, six connections to three neurons, and so on.

You can combine context neurons with the input, hidden, and output layers
of a neural network in many different ways. In the next two sections, we explore
two common SRN architectures.

13.2.1 Elman Neural Networks

In 1990, Elman introduced a neural network that provides pattern recognition
to time series. This neural network type has one input neuron for each stream
that you are using to predict. There is one output neuron for each time slice
you are trying to predict. A single-hidden layer is positioned between the input
and output layer. A layer of context neurons takes its input from the hidden

246 Time Series and Recurrent Networks

layer output and feeds back into the same hidden layer. Consequently, the
context layers always have the same number of neurons as the hidden layer,
as demonstrated by Figure 13.4:

Figure 13.4: Elman SRN

The Elman neural network is a good general-purpose architecture for sim-
ple recurrent neural networks. You can pair any reasonable number of input
neurons to any number of output neurons. Using normal weighted connections,
the two context neurons are fully connected with the two hidden neurons. The
two context neurons receive their state from the two non-weighted connections
(dashed lines) from each of the two hidden neurons.

13.2.2 Jordan Neural Networks

In 1993, Jordan introduced a neural network to control electronic systems.
This style of SRN is similar to Elman networks. However, the context neurons
are fed from the output layer instead of the hidden layer. We also refer to the
context units in a Jordan network as the state layer. They have a recurrent
connection to themselves with no other nodes on this connection, as seen in
Figure 13.5:

13.2 Simple Recurrent Neural Networks 247

Figure 13.5: Jordan SRN

The Jordan neural network requires the same number of context neurons
and output neurons. Therefore, if we have one output neuron, the Jordan
network will have a single context neuron. This equality can be problematic
if you have only a single output neuron because you will be able to have just
one single-context neuron.

The Elman neural network is applicable to a wider array of problems than
the Jordan network because the large hidden layer creates more context neu-
rons. As a result, the Elman network can recall more complex patterns because
it captures the state of the hidden layer from the previous iteration. This state
is never bipolar since the hidden layer represents the first line of feature de-
tectors.

Additionally, if we increase the size of the hidden layer to account for
a more complex problem, we also get more context neurons with an Elman
network. The Jordan network doesn’t produce this effect. To create more
context neurons with the Jordan network, we must add more output neurons.
We cannot add output neurons without changing the definition of the problem.

248 Time Series and Recurrent Networks

When to use a Jordan network is a common question. Programmers origi-
nally developed this network type for robotics research. Neural networks that
are designed for robotics typically have input neurons connected to sensors and
output neurons connected to actuators (typically motors). Because each motor
has its own output neuron, neural networks for robots will generally have more
output neurons than regression neural networks that predict a single value.

13.2.3 Backpropagation through Time

You can train SRNs with a variety of methods. Because SRNs are neural
networks, you can train their weights with any optimization algorithm, such
as simulated annealing, particle swarm optimization, Nelder-Mead or others.
Regular backpropagation-based algorithms can also train of the SRN. Mozer
(1995), Robinson & Fallside (1987) and Werbos (1988) each invented an algo-
rithm specifically designed for SRNs. Programmers refer to this algorithm as
backpropagation through time (BPTT). Sjoberg, Zhang, Ljung, et al. (1995)
determined that backpropagation through time provides superior training per-
formance than general optimization algorithms, such as simulated annealing.
Backpropagation through time is even more sensitive to local minima than
standard backpropagation.

Backpropagation through time works by unfolding the SRN to become a
regular neural network. To unfold the SRN, we construct a chain of neural
networks equal to how far back in time we wish to go. We start with a neural
network that contains the inputs for the current time, known as t. Next we
replace the context with the entire neural network, up to the context neuron’s
input. We continue for the desired number of time slices and replace the final
context neuron with a 0. Figure 13.6 illustrates this process for two time slices.

13.2 Simple Recurrent Neural Networks 249

Figure 13.6: Unfolding to Two Time Slices

This unfolding can continue deeper; Figure 13.7 shows three time slices:

Figure 13.7: Unfolding to Two Time Slices

You can apply this abstract concept to the actual SRNs. Figure 13.8
illustrates a two-input, two-hidden, one-output Elman neural network unfolded
to two time slices:

250 Time Series and Recurrent Networks

Figure 13.8: Elman Unfolded to Two Time Slices

As you can see, there are inputs for both t (current time) and t-1 (one time
slice in the past). The bottom neural network stops at the hidden neurons
because you don’t need everything beyond the hidden neurons to calculate
the context input. The bottom network structure becomes the context to the
top network structure. Of course, the bottom structure would have had a
context as well that connects to its hidden neurons. However, because the
output neuron above does not contribute to the context, only the top network
(current time) has one.

It is also possible to unfold a Jordan neural network. Figure 13.9 shows a
two-input, two-hidden, one-output Jordan network unfolded to two time slices.

13.2 Simple Recurrent Neural Networks 251

Figure 13.9: Jordan Unfolded to Two Time Slices

Unlike the Elman network, you must calculate the entire Jordan network
to determine the context. As a result, we can calculate the previous time slice
(bottom network) all the way to the output neuron.

To train the SRN, we can use regular backpropagation to train the unfolded
network. However, at the end of the iteration, we average the weights of all
folds to obtain the weights for the SRN. Listing 13.1 describes the BPTT
algorithm:

Listing 13.1: Backpropagation Through Time (BPTT):
def bptt (a , y)
a [t] i s the input at time t . y [t] i s the output

. . un fo ld the network to conta in k i n s t a n c e s o f f

. . s e e above f i g u r e . .
while s topping c r i t e r i a no met :

x i s the current con t ex t
x = []
for t from 0 to n Ű 1 :

t i s time . n i s the l e n g t h o f the t r a i n i n g sequence
. . set the network inputs to x , a [t] , a [t +1] , . . . , a [t+k−1]

252 Time Series and Recurrent Networks

p = . . forward−propagat ion o f the inputs
. . over the whole unfo lded network

error = t a r g e t − p r e d i c t i o n
e = y [t+k] − p
. . Back−propagate the er ror , e , back ac ro s s
. . the whole unfo lded network

. . Update a l l the weights in the network

. . Average the weights in each in s t ance o f f together ,

. . so that each f i s i d e n t i c a l
compute the con t ex t f o r the next time−s t ep

x = f (x)

13.2.4 Gated Recurrent Units

Although recurrent neural networks have never been as popular as the regular
feedforward neural networks, active research on them continues. Chung, Hyun
& Bengio (2014) introduced the gated recurrent unit (GRU) to allow recurrent
neural networks to function in conjunction with deep neural network by solving
some inherent limitations of recurrent neural networks. GRUs are neurons that
provide a similar role to the context neurons seen previously in this chapter.

It is difficult to train RNNs to capture long-term dependencies because the
gradients tend to either vanish (most of the time) or explode (rarely, but with
severe effects), as demonstrated by Chung, Hyun & Bengio (2015).

As of the 2015 publication of this book, GRUs are less than a year old.
Because of the cutting edge nature of GRUs, most major neural network frame-
works do not currently include them. If you would like to experiment with
GRUs, the Python Theano-based framework Keras includes them. You can
find the framework at the following URL:

https://github.com/fchollet/keras
Though we usually use Lasange, Keras is one of many Theano-based frame-

works for Python, and it is also one of the first to support GRUs. This section
contains a brief, high-level introduction to GRU, and we will update the book’s
examples as needed to support this technology as it becomes available. Refer
to the book’s example code for up-to-date information on example availability

https://github.com/fchollet/keras

13.3 Chapter Summary 253

for GRU.
A GRU uses two gates to overcome these limitations, as shown in Figure

13.10:

Figure 13.10: Gated Recurrent Unit (GRU)

The gates are indicated by z, the update gate, and r, the reset gate. The
values h and tilde-h represent the activation (output) and candidate activation.
It is important to note that the switches specify ranges, rather than simply
being on or off.

The primary difference between the GRU and traditional recurrent neu-
ral networks is that the entire context value does not change its value each
iteration as it does in the SRN. Rather, the update gate governs the degree
of update to the context activation that occurs. Additionally, the program
provides a reset gate that allows the context to be reset.

13.3 Chapter Summary

In this chapter, we introduced several methods that can handle time series
data with neural networks. A feedforward neural network produces the same
output when provided the same input. As a result, feedforward neural net-
works are said to be deterministic. This quality does not allow a feedforward
neural network the ability to produce output, given a series of inputs. If your
application must provide output based on a series of inputs, you have two
choices. You can encode the time series into an input feature vector or use a
recurrent neural network.

254 Time Series and Recurrent Networks

Encoding a time series is a way of capturing time series information in
a feature vector that is fed to a feedforward neural network. A number of
methods encode time series data. We focused on sliding window encoding.
This method specifies two windows. The first window determines how far into
the past to use for prediction. The second window determines how far into
the future to predict.

Recurrent neural networks are another method to deal with time series
data. Encoding is not necessary with a recurrent neural network because
it is able to remember previous inputs to the neural network. This short-
term memory allows the neural network to be able to see patterns in time.
Simple recurrent networks use a context neuron to remember the state from
previous computations. We examined Elman and Jordan SRNs. Additionally,
we introduced a very new neuron type called the gated recurrent unit (GRU).
This neuron type does not immediately update its context value like the Elman
and Jordan networks. Two gates govern the degree of update.

Hyper-parameters define the structure of a neural network and ultimately
determine its effectiveness for a particular problem. In the previous chapters
of this book, we introduced hyper-parameters such as the number of hidden
layers and neurons, the activation functions, and other governing attributes of
neural networks. Determining the correct set of hyper-parameters is often a
difficult task of trial and error. However, some automated processes can make
this process easier. Additionally, some rules of thumb can help architect these
neural networks. We cover these pointers, as well as automated processes, in
the next chapter.

13.3 Chapter Summary 255

257

Chapter 14

Architecting Neural Networks

• Hyper-parameters

• Learning Rate & Momentum

• Hidden Structure

• Activation Functions

Hyper-parameters, as mentioned in previous chapters, are the numerous set-
tings for models such as neural networks. Activation functions, hidden neuron
counts, layer structure, convolution, max-pooling and dropout are all exam-
ples of neural network hyper-parameters. Finding the optimal set of hyper-
parameters can seem a daunting task, and, indeed, it is one of the most time-
consuming tasks for the AI programmer. However, do not fear, we will provide
you with a summary of the current research on neural network architecture
in this chapter. We will also show you how to conduct experiments to help
determine the optimal architecture for your own networks.

We will make architectural recommendations in two ways. First, we will
report on recommendations from scientific literature in the field of AI. These
recommendations will include citations so that you can examine the original
paper. However, we will strive to present the key concept of the article in an
approachable manner. The second way will be through experimentation. We
will run several competing architectures and report the results.

258 Architecting Neural Networks

You need to remember that a few hard and fast rules do not dictate the
optimal architecture for every project. Every data set is different, and, as a
result, the optimal neural network for every data set is also different. Thus, you
must always perform some experimentation to determine a good architecture
for your network.

14.1 Evaluating Neural Networks

Neural networks start with random weights. Additionally, some training algo-
rithms use random values as well. All considered, we’re dealing with quite a
bit of randomness in order to make comparisons. Random number seeds are a
common solution to this issue; however, a constant seed does not provide an
equal comparison, given that we are evaluating neural networks with different
neuron counts.

Let’s compare a neural network with 32 connections against another net-
work with 64 connections. While the seed guarantees that the first 32 connec-
tions retain the same value, there are now 32 additional connections that will
have new random values. Furthermore, those 32 weights in the first network
might not be in the same locations in the second network if the random seed
is maintained between only the two initial weight sets.

To compare architectures, we must perform several training runs and aver-
age the final results. Because these extra training runs add to the total runtime
of the program, excessive numbers of runs will quickly become impractical. It
can also be beneficial to choose a training algorithm that is deterministic (one
that does not use random numbers). The experiments that we will perform in
this chapter will use five training runs and the resilient propagation (RPROP)
training algorithm. RPROP is deterministic, and five runs are an arbitrary
choice that provides a reasonable level of consistency. Using the Xavier weight
initialization algorithm, introduced in Chapter 4, “Feedforward Neural Net-
works,” will also help provide consistent results.

14.2 Training Parameters 259

14.2 Training Parameters

Training algorithms themselves have parameters that you must tune. We don’t
consider the parameters related to training as hyper-parameters because they
are not evident after a neural network has been trained. You can examine a
trained neural network to determine easily what hyper-parameters are present.
A simple examination of the network reveals the neuron counts and activation
function in use. However, determining training parameters such as learning
rate and momentum is not possible. Both training parameters and hyper-
parameters greatly affect the error rates that the neural network can obtain.
However, we can use training parameters only during the actual training.

The three most common training parameters for neural networks are listed
here:

• Learning Rate

• Momentum

• Batch Size

Not all learning algorithms have these parameters. Additionally, you can vary
the values chosen for these parameters as learning progresses. We discuss these
training parameters in the subsequent sections.

14.2.1 Learning Rate

The learning rate allows us to determine how far each iteration of training will
take the weight values. Some problems are very simple to solve, and a high
training rate will yield a quick solution. Other problems are more difficult,
and a quick learning might disregard a good solution. Other than the runtime
of your program, there is no disadvantage in choosing a small learning rate.
Figure 14.1 shows how a learning rate might fare on both a simple (unimodal)
and complex (multimodal) problem:

260 Architecting Neural Networks

Figure 14.1: Learning Rates

The above two charts show the relationship between weight and the score
of a network. As the program increases or decreases a single weight, the score
changes. A unimodal problem is typically easy to solve because its graph has
only one bump, or optimal solution. In this case, we consider a good score to
be a low error rate.

A multimodal problem has many bumps, or possible good solutions. If the
problem is simple (unimodal), a fast learning rate is optimal because you can
charge up the hill to a great score. However, haste makes waste on the second
chart, as the learning rate fails to find the two optimums.

Kamiyama, Iijima, Taguchi, Mitsui, et al. (1992) stated that most liter-
ature use a learning rate of 0.2 and a momentum of 0.9. Often this learning
rate and momentum can be good starting points. In fact, many examples do
use these values. The researchers suggest that Equation 14.1 has a strong
likelihood of attaining better results.

ε = K(1− α) (14.1)
The variable α (alpha) is the momentum; ε (epsilon) is the learning rate, and
K is a constant related to the hidden neurons. Their research suggests that
the tuning of momentum (discussed in the next section) and learning rate are
related. We define the constant K by the number of hidden neurons. Smaller
numbers of hidden neurons should use a larger K. In our own experimentations,
we do not use the equation directly because it is difficult to choose a concrete

14.2 Training Parameters 261

value of K. The following calculations show several learning rates based on
learning rate and K.
k=0.500000 , alpha =0.200000 −> e p s i l o n =0.400000
k=0.500000 , alpha =0.300000 −> e p s i l o n =0.350000
k=0.500000 , alpha =0.400000 −> e p s i l o n =0.300000
k=1.000000 , alpha =0.200000 −> e p s i l o n =0.800000
k=1.000000 , alpha =0.300000 −> e p s i l o n =0.700000
k=1.000000 , alpha =0.400000 −> e p s i l o n =0.600000
k=1.500000 , alpha =0.200000 −> e p s i l o n =1.200000
k=1.500000 , alpha =0.300000 −> e p s i l o n =1.050000
k=1.500000 , alpha =0.400000 −> e p s i l o n =0.900000

The lower values of K represent higher hidden neuron counts; therefore the
hidden neuron count is decreasing as you move down the list. As you can see,
for all momentums (α, alpha) of 0.2, the suggested learning rate (ε, epsilon)
increases as the hidden neuron counts decrease. The learning rate and momen-
tum have an inverse relationship. As you increase one, you should decrease
the other. However, the hidden neuron count controls how quickly momentum
and learning rate should diverge.

14.2.2 Momentum

Momentum is a learning property that causes the weight change to continue
in its current direction, even if the gradient indicates that the weight change
should reverse direction. Figure 14.2 illustrates this relationship:

262 Architecting Neural Networks

Figure 14.2: Momentum and a Local Optima

A positive gradient encourages the weight to decrease. The weight has
followed the negative gradient up the hill but now has settled into a valley, or
a local optima. The gradient now moves to 0 and positive as the other side
of the local optima is hit. Momentum allows the weight to continue in this
direction and possibly escape from the local-optima valley and possibly find
the lower point to the right.

To understand exactly how learning rate and momentum are implemented,
recall Equation 6.6, from Chapter 6, “Backpropagation Training,” that is re-
peated as Equation 14.2 for convenience:

∆w(t) = −ε ∂E
∂w(t)

+ α∆w(t−1) (14.2)

This equation shows how we calculate the change in weight for training it-
eration t. This change is the sum of two terms that are each governed by
the learning rate ε (epsilon) and momentum α (alpha). The gradient is the
weight’s partial derivative of the error rate. The sign of the gradient deter-
mines if we should increase or decrease the gradient. The learning rate simply
tells backpropagation the percentage of this gradient that the program should
apply to the weight change. The program always applies this change to the
original weight and then retains it for the next iteration. The momentum
α (alpha) subsequently determines the percentage of the previous iteration’s
weight change that the program should apply to this iteration. Momentum

14.2 Training Parameters 263

allows the previous iteration’s weight change to carry through to the current
iteration. As a result, the weight change maintains its direction. This process
essentially gives it “momentum.”

Jacobs (1988) discovered that learning rate should be decreased as training
progresses. Additionally, as previously discussed, Kamiyama, et al. (1992)
asserted that momentum should be increased as the learning rate is decayed.
A decreasing learning rate, coupled with an increasing momentum, is a very
common pattern in neural network training. The high learning rate allows the
neural network to begin exploring a larger area of the search space. Decreasing
the learning rate forces the network to stop exploring and begin exploiting a
more local region of the search space. Increasing momentum at this point
helps guard against local minima in this smaller search region.

14.2.3 Batch Size

The batch size specifies the number of training set elements that you must
calculate before the weights are actually updated. The program sums all of
the gradients for a single batch before it updates the weights. A batch size
of 1 indicates that the weights are updated for each training set element. We
refer to this process as online training. The program often sets the batch size
to the size of the training set for full batch training.

A good starting point is a batch size equal to 10% of the entire training
set. You can increase or decrease the batch size to see its effect on train-
ing efficiency. Usually a neural network will have vastly fewer weights than
training set elements. As a result, cutting the batch size by a half, or even a
fourth, will not have a drastic effect on the runtime of an iteration in standard
backpropagation.

264 Architecting Neural Networks

14.3 General Hyper-Parameters

In addition to the training parameters just discussed, we must also consider
the hyper-parameters. They are significantly more important than training
parameters because they determine the neural networks ultimate learning ca-
pacity. A neural network with a reduced learning capacity cannot overcome
this deficiency with further training.

14.3.1 Activation Functions

Currently, the program utilizes two primary types of activation functions inside
of a neural network:

• Sigmoidal: Logistic (sigmoid) & Hyperbolic Tangent (tanh)

• Linear: ReLU

The sigmoidal (s-shaped) activation functions have been a mainstay of neural
networks, but they are now losing ground to the ReLU activation function.
The two most common s-shaped activation functions are the namesake sig-
moid activation function and the hyperbolic tangent activation function. The
name can cause confusion because sigmoid refers both to an actual activation
function and to a class of activation functions. The actual sigmoid activation
function has a range between 0 and 1, whereas the hyperbolic tangent func-
tion has a range of -1 and 1. We will first tackle hyperbolic tangent versus
sigmoid (the activation function). Figure 14.3 shows the overlay of these two
activations:

14.3 General Hyper-Parameters 265

Figure 14.3: Sigmoid and Tanh

As you can see from the figure, the hyperbolic tangent stretches over a
much larger range than tanh. Your choice of these two activations will affect
the way that you normalize your data. If you are using hyperbolic tangent
at the output layer of your neural network, you must normalize the expected
outcome between -1 and 1. Similarly, if you are using the sigmoid function
for the output layer, you must normalize the expected outcome between -1
and 1. You should normalize the input to -1 to 1 for both of these activation
functions. The x-values (input) above +1 will saturate to +1 (y-values) for
both sigmoid and hyperbolic tangent. As x-values go below -1, the sigmoid
activation function saturates to y-values of 0, and hyperbolic tangent saturates
to y-values of -1.

The saturation of sigmoid to values of 0 in the negative direction can be
problematic for training. As a result, Kalman & Kwasny (1992) recommend
hyperbolic tangent in all situations instead of sigmoid. This recommendation
corresponds with many literature sources. However, this argument only ex-
tends to the choice between sigmoidal activation functions. A growing body
of recent research favors the ReLU activation function in all cases over the
sigmoidal activation functions.

Zeiler et al. (2014), Maas, Hannun, Awni & Ng (2013) and Glorot, Bordes
& Bengio (2013) all recommend the ReLU activation function over its sig-
moidal counterparts. “Chapter 9, “Deep Learning,” includes the advantages

266 Architecting Neural Networks

of the ReLU activation function. In this section, we will examine an experi-
ment that compares the ReLU to the sigmoid, we used a neural network with a
hidden layer of 1,000 neurons. We ran this neural network against the MNIST
data set. Obviously, we adjusted the number of input and output neurons to
match the problem. We ran each activation function five times with different
random weights and kept the best results:
Sigmoid :
Best v a l i d l o s s was 0 .068866 at epoch 43 .
I n c o r r e c t 192/10000 (1.92%)
ReLU:
Best v a l i d l o s s was 0 .068229 at epoch 17 .
I n c o r r e c t 170/10000 (1.7000000000000002%)

The accuracy rates for each of the above neural networks on a validation
set. As you can see, the ReLU activation function did indeed have the lowest
error rate and achieved it in fewer training iterations/epochs. Of course, these
results will vary, depending on the platform used.

14.3.2 Hidden Neuron Configurations

Hidden neuron configurations have been a frequent source of questions. Neural
network programmers often wonder exactly how to structure their networks.
As of the writing of this book, a quick scan of Stack Overflow shows over 50
questions related to hidden neuron configurations. You can find the questions
at the following link:

http://goo.gl/ruWpcb
Although the answers may vary, most of them simply advise that the pro-

grammer “experiment and find out.” According to the universal approxima-
tion theorem, a single-hidden-layer neural network can theoretically learn any
pattern (Hornik, 1991). Consequently, many researchers suggest only single-
hidden-layer neural networks. Although a single-hidden-layer neural network
can learn any pattern, the universal approximation theorem does not state
that this process is easy for a neural network. Now that we have efficient tech-
niques to train deep neural networks, the universal approximation theorem is
much less important.

http://goo.gl/ruWpcb

14.4 LeNet-5 Hyper-Parameters 267

To see the effects of hidden neurons and neuron counts, we will perform
an experiment that will look at one-layer and two-layer neural networks. We
will try every combination of hidden neurons up to two 50-neuron layers. This
neural network will use a ReLU activation function and RPROP. This exper-
iment took over 30 hours to run on an Intel I7 quad-core. Figure 14.4 shows
a heat map of the results:

Figure 14.4: Heat Map of Two-Layer Network (first experiment)

The best configuration reported by the experiment was 35 neurons in hid-
den layer 1, and 15 neurons in hidden layer 2. The results of this experiment
will vary when repeated. The above diagram shows the best-trained networks
in the lower-left corner, as indicated by the darker squares. This indicates that
the network favors a large first hidden layer with smaller second hidden layers.
The heat map shows the relationships between the different configurations. We
achieved better results with smaller neuron counts on the second hidden layer.
This occurred because the neuron counts constricted the information flow to
the output layer. This approach is consistent with research into auto-encoders
in which successively smaller layers force the neural network to generalize in-
formation, rather than overfit. In general, based on the experiment here, we
advise using at least two hidden layers with successively smaller layers.

14.4 LeNet-5 Hyper-Parameters

The LeNet-5 convolutional neural networks introduce additional layer types
that bring more choices in the construction of neural networks. Both the con-
volutional and max-pooling layers create other choices for hyper-parameters.
Chapter 10, “Convolutional Neural Networks” contains a complete list of

268 Architecting Neural Networks

hyper-parameters that the LeNet-5 network introduces. In this section, we
will review LeNet-5 architectural recommendations recently suggested in sci-
entific papers.

Most literature on LeNet-5 networks supports the use of a max-pool layer
to follow every convolutional layer. Ideally, several convolutional/max-pool
layers reduce the resolution at each step. Chapter 6, “Convolutional Neural
Networks” includes this demonstration. However, very recent literature seems
to indicate that max-pool layers should not be used at all.

On November 7, 2014, the website Reddit featured Dr. Geoffrey Hinton for
an “ask me anything (AMA)” session. Dr. Hinton is the foremost researcher
in deep learning and neural networks. During the AMA session, Dr. Hinton
was asked about max-pool layers. You can read his complete response here:

https://goo.gl/TgBakL
Overall, Dr. Hinton begins his answer saying, “The pooling operation used

in convolutional neural networks is a big mistake, and the fact that it works
so well is a disaster.” He then proceeds with a technical description of why
you should never use max-pooling. At the time of this book’s publication, his
response is fairly recent and controversial. Therefore we suggest that you try
the convolutional neural networks both with and without max-pool layers, as
their future looks uncertain.

14.5 Chapter Summary

Selecting a good set of hyper-parameters is one of the most difficult tasks
for the neural network programmer. The number of hidden neurons, ac-
tivation functions, and layer structures are all examples of neural network
hyper-parameters that the programmer must adjust and fine-tune. All these
hyper-parameters can affect the overall capacity of the neural network to learn
patterns. As a result, you must choose them correctly.

Most current literature suggests using the ReLU activation function in
place of the sigmoidal (s-shaped) activation functions. If you are going to use
a sigmoidal activation, most literature recommends that you use the hyperbolic
tangent activation function instead of the sigmoidal activation function. The
ReLU activation function is more compatible with deep neural networks.

https://goo.gl/TgBakL

14.5 Chapter Summary 269

The number of hidden layers and neurons is also an important hyper-
parameter for neural networks. It is generally advisable that successive hidden
layers contain a smaller number of neurons than the immediately previous
layer. This adjustment has the effect of constraining the data from the inputs
and forcing the neural network to generalize and not memorize, which results
in overfitting.

We do not consider training parameters as hyper-parameters because they
do not affect the structure of the neural network. However, you still must
choose a proper set of training parameters. The learning rate and momentum
are two of the most common training parameters for neural networks. Gener-
ally, you should initially set the learning rate high and decrease it as training
continues. You should move the momentum value inversely with the learning
rate.

In this chapter, we examined how to structure neural networks. While
we provided some general recommendations, the data set generally drives the
architecture of the neural network. Consequently, you must analyze the data
set. We will introduce the t-SNE dimension reduction algorithm in the next
chapter. This algorithm will allow you to visualize graphically your data set
and see issues that occur while you are creating a neural network for that data
set.

271

Chapter 15

Visualization

• Confusion Matrices

• PCA

• t-SNE

We frequently receive the following question about neural networks: “I’ve
created a neural network, but when I train it, my error never goes to an
acceptable level. What should I do?” The first step in this investigation is to
determine if one of the following common errors has occurred.

• Correct number of input and output neurons

• Data set normalized correctly

• Some fatal design decision of the neural network

Obviously, you must have the correct number of input neurons to match how
your data are normalized. Likewise, you should have a single-output neuron for
regression problems or usually one output neuron per class for a classification
problem. You should normalize input data to fit the activation function that
you use. In a similar way, fatal mistakes, such as no hidden layer or a learning
rate of 0, can create a bad situation.

272 Visualization

However, once you eliminate all these errors, you must look to your data.
For classification problems, your neural network may have difficulties differen-
tiating between certain pairs of classes. To help you resolve this issue, some
visualization algorithms exist that allow you to see the problems that your neu-
ral network might encounter. The two visualizations presented in this chapter
will show the following issues with data:

• Classes that are easily confused for others

• Noisy data

• Dissimilarity between classes

We describe each issue in the subsequent sections and offer some potential so-
lutions. We will present these potential solutions in the form of two algorithms
of increasing complexity. Not only is the topic of visualization important for
data analysis, it was also chosen as a topic by the readers of this book, which
earned its initial funding through a Kickstarter campaign. The project’s orig-
inal 653 backers chose visualization from among several competing project
topics. As a result, we will present two visualizations. Both examples will use
the MNIST handwritten digits data set that we have examined in previous
chapters of this book.

15.1 Confusion Matrix

A neural network trained for the MNIST data set should be able to take a
handwritten digit and predict what digit was actually written. Some digits
are more easily confused for others. Any classification neural network has
the possibility of misclassifying data. A confusion matrix can measure these
misclassifications.

15.1.1 Reading a Confusion Matrix

A confusion matrix is always presented as a square grid. The number of rows
and columns will both be equal to the number of classes in your problem. For
MNIST, this will be a 10x10 grid, as shown by Figure 15.1:

15.1 Confusion Matrix 273

Figure 15.1: MNIST Confusion Matrix

A confusion matrix uses the columns to represent predictions. The rows
represent what would have been a correct prediction. If you look at row 0
column 0, you will see the number 1,432. This result means that the neural
network correctly predicted a “0” 1,432 times. If you look at row 3 column 2,
you will see that a “2” was predicted 49 times when it should have been a “3.”
The problem occurred because it’s easy to mistake a handwritten “3” for a
“2,” especially when a person with bad penmanship writes the numbers. The
confusion matrix lets you see which digits are commonly mistaken for each
other. Another important aspect of the confusion matrix is the diagonal from
(0,0) to (9,9). If the program trains the neural network properly, the largest
numbers should be in the diagonal. Thus, a perfectly trained neural network
will only have numbers in the diagonal.

15.1.2 Generating a Confusion Matrix

You can create a confusion matrix with the following steps:

• Separate the data set into training and validation.

• Train a neural network on the training set.

• Set the confusion matrix to all zeros.

• Loop over every element in the validation set.

274 Visualization

• For every element, increase the cell: row=expected, column=predicted.

• Report the confusion matrix.

Listing 15.1 shows this process in the following pseudocode:

Listing 15.1: Compute a Confusion Matrix
x − conta ins d a t a s e t inpu t s
y − conta ins d a t a s e t expec ted va l u e s (ord ina l s , not s t r i n g s)
def con fus i on matr ix (x , y , network) :
Create square matrix equa l to number o f c l a s s i f i c a t i o n s

con fus i on = matrix (network . num classes , network . num classes)
Loop over every element

for i from 0 to len (x) :
p r e d i c t i o n = net . compute (x [i])

t a r g e t = y [i]
con fu s i on [t a r g e t] [p r e d i c t i o n] = con fus i on [t a r g e t] [p r e d i c t i o n

] + 1
Return r e s u l t

return con fus i on

Confusion matrices are one of the classic visualizations for classification data
problems. You can use them with any classification problem, not just neural
networks.

15.2 t-SNE Dimension Reduction

The t-Distributed Stochastic Neighbor Embedding (t-SNE) is a type of di-
mensionality reduction algorithm that programmers frequently use for visual-
ization. We will first define dimension reduction and show its advantages for
visualization and problem simplification.

The dimensions of a data set are the number of input (x) values that the
program uses to make predictions. The classic iris data set has four dimensions
because we measure the iris flowers in four dimensions. Chapter 4, “Feedfor-
ward Networks,” has an explanation of the iris data set. The MNIST digits are
images of 28x28 grayscale pixels, which result in a total of 784 input neurons
(28 x 28). As a result, the MNIST data set has 784 dimensions.

15.2 t-SNE Dimension Reduction 275

For dimensionality reduction, we need to ask the following question: “Do
we really need 784 dimensions or could we project this data set into fewer
dimensions?” Projections are very common in cartography. Earth exists in
at least three dimensions that we can directly observe. The only true three-
dimensional map of Earth is a globe. However, globes are inconvenient to store
and transport. As long as it still contains the information that we require, a
flat (2D) representation of Earth is useful for spaces where a globe will not fit.
We can project the globe on a 2D surface in many ways. Figure 15.2 shows
the Lambert projection (from Wikipedia) of Earth:

Figure 15.2: Lambert Projection (cone)

Johann Heinrich Lambert introduced the Lambert projection in 1772. Con-
ceptually, this projection works by placing a cone over some region of the globe
and projecting the image onto the globe. Once the cone is unrolled, you have
a flat 2D map. Accuracy is better near the tip of the cone and worsens to-
wards the base of the cone. The Lambert projection is not the only way to
project the globe and produce a map, Figure 15.3 shows the popular Mercator
projection:

276 Visualization

Figure 15.3: Mercator Projection (cylinder)

Gerardus Mercator presented the Mercator projection in 1569. This projec-
tion works by essentially wrapping a cylinder about the globe at the equator.
Accuracy is best at the equator and worsens near the poles. You can see this
characteristic by examining the relative size of Greenland in both projections.
Along with the two projections just mentioned, many other types exist. Each
is designed to show Earth in ways that are useful for different applications.

The projections above are not strictly 2D because they create a type of
third dimension with other aspects like color. The map projections can con-
vey additional information such as altitude, ground cover, or even political
divisions with color. Computer projections also utilize color, as we will dis-
cover in the next section.

15.2.1 t-SNE as a Visualization

If we can reduce the MNIST 764 dimensions down to two or three with a
dimension reduction algorithm, then we can visualize the data set. Reducing

15.2 t-SNE Dimension Reduction 277

to two dimensions is popular because an article or a book can easily capture
the visualization. It is important to remember that a 3D visualization is not
actually 3D, as true 3D displays are extremely rare, as of the writing of this
book. A 3D visualization will be rendered onto a 2D monitor. As a result, it
is necessary to “fly” through the space and see how parts of the visualization
really appear. This flight through space is very similar to a computer video
game where you do not see all aspects of a scene until you fly completely
around the object being viewed. Even in the real world, you cannot see both
the front and back of an object you are holding–it is necessary to rotate the
object with your hands to see all sides.

Karl Pearson in 1901 invented one of the most common dimensionality
reduction algorithms. Principal component analysis (PCA) creates a number
of principal components that match the number of dimensions to be reduced.
For a 2D reduction, there would be two principal components. Conceptually,
PCA is attempting to pack the higher-dimensional items into the principal
components that maximize the amount of variability in the data. By ensuring
that the distant values in high-dimensional space remain distant, PCA can
complete its function. Figure 15.4 shows a PCA reduction of the MNIST
digits to two dimensions:

Figure 15.4: 2D PCA Visualization of MNIST

The first principal component is the x-axis (left and right). As you can
see, the matrix positions the blue dots (0’s) at the far left, and the red dots

278 Visualization

(1’s) are placed towards the right. Handwritten 1’s and 0’s are the easiest to
differentiate–they have the highest variability. The second principal compo-
nent is the y-axis (up and down). On the top, you have green (2’s) and brown
(3’s), which look somewhat similar. On the bottom are purple (4’s), gray (9’s)
and black (7’s), which also look similar. Yet the variability between these two
groups is high–it is easier to tell 2’s and 3’s from 4’s, 9’s and 7’s.

Color is very important to the above image. If you are reading this book
in a black-and-white form, this image may not make as much sense. The
color represents the digit that PCA classified. You must note that PCA and
t-SNE are both unsupervised; therefore, they do not know the identities of the
input vectors. In other words, they don’t know which digit was selected. The
program adds the colors so that we can see how well PCA classified the digits.
If the above diagram is black and white in your version, you can see that the
program did not place the digits into many distinct groups. We can therefore
conclude that PCA does not work well as a clustering algorithm.

The above figure is also very noisy because the dots overlap in large regions.
The most well-defined region is blue, where the “1” digits reside. You can also
see that purple (4), black (7), and gray (9) are easy to confuse. Additionally,
brown (3), green (2), and yellow (8) can be misleading.

PCA analyzes the pair-wise distances of all data points and preserves large
distances. As previously stated, if two points are distant in PCA, they will
remain distant. However, we have to question the importance of distance.
Consider Figure 15.5 that shows two points that appear to be somewhat close:

15.2 t-SNE Dimension Reduction 279

Figure 15.5: Apparent Closeness on a Spiral

The points in question are the two red, solid points that are connected
by a line. The two points, when connected by a straight line, are somewhat
close. However, if the program follows the pattern in the data, the points are
actually far apart, as indicated by the solid spiral line that follows all of the
points. PCA would attempt to keep these two points close as they appear
in Figure 15.5. The t-SNE algorithm invented by van der Maaten & Hinton
(2008), works somewhat differently. Figure 15.6 shows the t-SNE visualization
for the same data set as featured for PCA:

280 Visualization

Figure 15.6: 2D PCA Visualization of MNIST

The t-SNE for the MNIST digits shows a much clearer visual for the differ-
ent digits. Again, the program adds color to indicate where the digits landed.
However, even in black and white, you would see some divisions between clus-
ters. Digits located nearer to each other share similarities. The amount of
noise is reduced greatly, but you can still see some red dots (0’s) sprinkled in
the yellow cluster (8’s) and cyan cluster (6’s), as well as other clusters. You
can produce a visualization for a Kaggle data set using the t-SNE algorithm.
We will examine this process in Chapter 16, “Modeling with Neural Networks.”

Implementations of t-SNE exist for most modern programming languages.
Laurens van der Maaten’s home page contains a list at the following URL:

http://lvdmaaten.github.io/tsne/

15.2.2 t-SNE Beyond Visualization

Although t-SNE is primarily an algorithm for reducing dimensions for visual-
ization, feature engineering also utilizes it. The algorithm can even serve as
a model component. Feature engineering occurs when you create additional
input features. A very simple example of feature engineering is when you con-
sider health insurance applicants, and you create an additional feature called

http://lvdmaaten.github.io/tsne/

15.3 Chapter Summary 281

BMI, based on the features weight and height, as seen in equation 15.1:

BMI = weight in kg
(height in meters)2 (15.1)

BMI is simply a calculated field that allows humans to combine height and
weight to determine how healthy someone is. Such features can sometimes
help neural networks as well. You can build some additional features with a
data point’s location in either 2D or 3D space.

In Chapter 16, “Modeling with Neural Networks,” we will discuss building
neural networks for the Otto Group Kaggle challenge. Several Kaggle top-ten
solutions for this competition used features that were engineered with t-SNE.
For this challenge, you had to organize data points into nine classes. The
distance between an item and the nearest neighbor of each of the nine classes
on a 3D t-SNE projection was a beneficial feature. To calculate this feature,
we simply map the entire training set into t-SNE space and obtain the 3D
t-SNE coordinates for each feature. Then we generate nine features with the
Euclidean distance between the current data point and its nearest neighbor of
each of these nine classes. Finally, the program adds these nine fields to the
92 fields already being presented to the neural network.

As a visualization or as part of the input to another model, the t-SNE al-
gorithm provides a great deal of information to the program. The programmer
can use this information to see how the data are structured, and the model
gains more details on the structure of the data. Most implementations of t-
SNE also contain adaptions for large data sets or for very high dimensions.
Before you construct a neural network to analyze data, you should consider
the t-SNE visualization. After you train the neural network to analyze its
results, you can use the confusion matrix.

15.3 Chapter Summary

Visualization is an important part of neural network programming. Each data
set presents unique challenges to a machine learning algorithm or a neural
network. Visualization can expose these challenges, allowing you to design
your approach to account for known issues in the data set. We demonstrated

282 Visualization

two visualization techniques in this chapter.
The confusion matrix is a very common visualization for machine learning

classification. It is always a square matrix with rows and columns equal to
the number of classes in the problem. The rows represent the expected values,
and the columns represent the value that the neural network actually classified.
The diagonal, where the row and column numbers are equal, represents the
number of times the neural network correctly classified that particular class. A
well-trained neural network will have the largest numbers along the diagonal.
The other cells count the number of times a misclassification occurred between
each expected class and actual value.

Although you usually run the confusion matrices after the program gen-
erates a neural network, you can run the dimension reduction visualizations
beforehand to expose some challenges that might be present in your data set.
You can reduce the dimensions of your data set to 2D or 3D with the t-SNE
algorithm. However, it becomes less effective in dimensions higher than 3D.
With the 2D dimension reduction, you can create informative scatter plots
that will show the relationship between several classes.

In the next chapter, we will present a Kaggle challenge as a way to synthe-
size many of the topics previously discussed. We will use the t-SNE visualiza-
tion as an initial. Additionally, we will decrease the neural network’s tendency
to overfit with the use of dropout layers.

15.3 Chapter Summary 283

285

Chapter 16

Modeling with Neural Networks

• Data Science

• Kaggle

• Ensemble Learning

In this chapter, we present a capstone project on modeling, a business-oriented
approach for artificial intelligence, and some aspects of data science. Drew
Conway (2013), a leading data scientist, characterizes data science as the in-
tersection of hacking skills, math and statistics knowledge, and substantive
expertise. Figure 16.1 depicts this definition:

Figure 16.1: Conway’s Data Science Venn Diagram

286 Modeling with Neural Networks

Hacking skills are essentially a subset of computer programming. Although
the data scientist does not necessarily need the infrastructure knowledge of an
information technology (IT) professional, these technical skills will permit him
or her to create short, effective programs for processing data. In the field of
data science, we refer to information processing as data wrangling.

Math and statistics knowledge covers statistics, probability, and other in-
ferential methods. Substantive knowledge describes the business knowledge as
well as the comprehension of actual data. If you combine only two of these
topics, you don’t have all the components for data science, as Figure 16.1
illustrates. In other words, the combination of statistics and substantive ex-
pertise is simply traditional research. Those two skills alone don’t encompass
the capabilities, such as machine learning, required for data science.

This book series deals with hacking skills and math and statistical knowl-
edge, two of the circles in Figure 16.1. Additionally, it teaches you to create
your own models, which is more pertinent to the field of computer science
than data science. Substantive expertise is more difficult to obtain because it
is dependent on the industry that utilizes the data science applications. For
example, if you want to apply data science in the insurance industry, substan-
tive knowledge refers to the actual business operations of these companies.

To provide a data science capstone project, we will use the Kaggle Otto
Group Product Classification Challenge. Kaggle is a platform for competitive
data science. You can find the Otto Group Product Classification Challenge
at the following URL:

https://www.kaggle.com/c/otto-group-product-classification-challenge

https://www.kaggle.com/c/otto-group-product-classification-challenge

287

The Otto Group was the first (and currently only) non-tutorial Kaggle
competition in which we’ve competed. After obtaining a top 10% finish, we
achieved one of the criteria for the Kaggle Master designation. To become
a Kaggle Master, one must place in the top 10 of a competition once and in
the top 10% of two other competitions. Figure 16.2 shows the results of our
competition entry on the leaderboard:

Figure 16.2: Results in the Otto Group Product Classification Challenge

The above line shows several pieces of information.

• We were in position 331 of 3514 (9.4%).

• We dropped three spots in the final day.

• Our multi-class log loss score was 0.42881.

• We made 52 submissions, up to May 18, 2015.

We will briefly describe the Otto Group Product Classification Challenge. For
a complete description, refer to the Kaggle challenge website (found above).
The Otto Group, the world’s largest mail order company and currently one
of the biggest e-commerce companies, introduced this challenge. Because the
group has many products sold over numerous countries, they wanted to classify
these products into nine categories with 93 features (columns). These 93
columns represented counts and were often 0.

The data were completely redacted (hidden). The competitors did not
know the nine categories nor did they know the meaning behind the 93 features.
They knew only that the features were integer counts. Like most Kaggle
competitions, this challenge provided the competitors with a test and training
data set. For the training data set, the competitors received the outcomes, or
correct answers. For the test set, they got only the 93 features, and they had
to provide the outcome.

288 Modeling with Neural Networks

The competition divided the test and training sets in the following way:

• Test Data: 144K rows

• Training Data: 61K rows

During the competition, participants did not submit their actual models to
Kaggle. Instead, they submitted their model’s predictions based on the test
data. As a result, they could have used any platform to make these predictions.
For this competition there were nine categories, so the competitors submitted
a nine-number vector that held the probability of each of these nine categories
being the correct answer.

The answer in the vector that held the highest probability was the chosen
class. As you can observe, this competition was not like a multiple-choice test
in school where students must submit their answer as A, B, C, or D. Instead,
Kaggle competitors had to submit their answers in the following way:

• A: 80% probability

• B: 16% probability

• C: 2% probability

• D: 2% probability

College exams would not be so horrendous if students could submit answers like
those in the Kaggle competition. In many multiple-choice tests, students have
confidence about two of the answers and eliminate the remaining two. The
Kaggle-like multiple-choice test would allow students to assign a probability
to each answer, and they could achieve a partial score. In the above example,
if A were the correct answer, students would earn 80% of the points.

Nevertheless, the actual Kaggle score is slightly more complex. The pro-
gram grades the answers with a logarithm-based scale, and participants face
heavy penalties if they have a lower probability on the correct answer. You
can see the Kaggle format from the following CSV file submission:

289

1 , 0 . 0003 , 0 . 2132 , 0 . 2340 , 0 . 5468 , 6 . 2998 e
−05 ,0 .0001 ,0 .0050 ,0 .0001 ,4 .3826 e−05

2 , 0 . 0 0 11 , 0 . 0 02 9 , 0 . 0 01 0 , 0 . 0 0 03 , 0 . 0 00 1 , 0 . 5 20 7 , 0 . 0 0 13 , 0 . 4 71 1 , 0 . 0 01 1
3 ,3 .2977 e−06 ,4.1419 e−06 ,7.4524 e−06 ,2.6550 e−06 ,5.0014 e
−07 ,0 .9998 ,5 .2621 e−06 ,0 .0001 ,6 .6447 e−06

4 , 0 . 0001 , 0 . 6786 , 0 . 3162 , 0 . 0039 , 3 . 3378 e−05 ,4.1196 e
−05 ,0 .0001 ,0 .0001 ,0 .0006

5 , 0 . 1403 , 0 . 0002 , 0 . 0002 , 6 . 734 e
−05 ,0 . 0001 ,0 . 0027 ,0 . 0009 ,0 . 0297 ,0 . 8255

As you can see, each line starts with a number that specifies the data item
that is being answered. The sample above shows the answers for items one
through five. The next nine values are the probabilities for each of the product
classes. These probabilities must add up to 1.0 (100%).

16.0.1 Lessons from the Challenge

Having success in Kaggle requires you to understand the following topics and
the corresponding tools:

• Deep Learning - Using H2O and Lasagne

• Gradient Boosting Machines (GBM) - Using XGBOOST

• Ensemble Learning - Using NumPy

• Feature Engineering - Using NumPy and Scikit-Learn

• GPU is really important for deep learning. It is best to use a deep
learning package that supports it, such as H2O, Theano or Lasagne.

• The t-SNE visualization is awesome for high-dimension visualization and
creating features.

• Ensembling is very important.

For our submission, we used Python with Scikit-Learn. However, you can
use any language capable of generating a CSV file. Kaggle does not actually

290 Modeling with Neural Networks

run your code; they score a submission file. The two most commonly used
programming languages for Kaggle are R and Python. Both of these lan-
guages have strong data science frameworks available for them. R is actually
a domain-specific language (DSL) for statistical analysis.

During this challenge, we learned the most about GBM parameter tuning
and ensemble learning. GBMs have quite a few hyper-parameters to tune, and
we became proficient at tuning a GBM. The individual scores for our GBMs
were in line with those of the top 10% of the teams. However, the solution
in this chapter will use only deep learning. GBM is beyond the scope of this
book. In a future volume or edition of this series, we plan to examine GBM.

Although computer programmers and data scientists might typically utilize
a single model like neural networks, participants in Kaggle need to use multiple
models to be successful in the competition. These ensembled models produce
better results than each of the models could generate independently.

We worked with t-SNE, examined in Chapter 15, “Visualization,” for the
first time in this competition. This model works like principal component
analysis (PCA) in that it is capable of reducing dimensions. However, the data
points separate in such a way that the visualization is often clearer than PCA.
The program achieves the clear visualization by using a stochastic nearest
neighbor process. Figure 16.3 shows the data from the Otto Group Product
Classification Challenge visualized in t-SNE:

291

Figure 16.3: Challenge t-SNE

16.0.2 The Winning Approach to the Challenge

Kaggle is very competitive. Our primary objective as we entered the challenge
was to learn. However, we also hoped to rank in the top 10% by the end
in order to reach one of the steps in becoming a Kaggle master. Earning a

292 Modeling with Neural Networks

top 10% was difficult; in the last few weeks of the challenge, other competitors
knocked us out of the bracket almost daily. The last three days were especially
turbulent. Before we reveal our solution, we will show you the winning one.
The following description is based on the information publically posted about
the winning solution.

The winners of the Otto Group Product Classification Challenge were
Gilberto Titericz & Stanislav Semenov. They competed as a team and used a
three-level ensemble, as seen in Figure 16.4:

Figure 16.4: Challenge Winning Ensemble

We will provide only a high-level overview of their approach. You can find
the full description at the following URL:

https://goo.gl/fZrJA0
The winning approach employed both the R and Python programming

languages. Level 1 used a total of 33 different models. Each of these 33 mod-
els provided its output to three models in level 2. Additionally, the program
generated eight calculated features. An engineered feature is one that is calcu-
lated based on the others. A simple example of an engineered feature might be
body mass index (BMI), which is calculated based on an individual’s height
and weight. The BMI value provides insights that height and weight alone
might not.

https://goo.gl/fZrJA0

293

The second level combined the following three model types:

• XGBoost - Gradient boosting

• Lasange Neural Network - Deep learning

• ADABoost Extra Trees

These three used the output of 33 models and eight features as input. The
output from these three models was the same nine-number probability vector
previously discussed. It was as if each model were being used independently,
thereby producing a nine-number vector that would have been suitable as an
answer submission to Kaggle. The program averaged together these output
vectors with the third layer, which was simply a weighting. As you can see,
the winners of the challenge used a large and complex ensemble. Most of the
winning solutions in Kaggle followed a similar pattern.

A complete discussion on exactly how they constructed this model is be-
yond the scope of this book. Quite honestly, such a discussion is also beyond
our own current knowledge of ensemble learning. Although these complex en-
sembles are very effective for Kaggle, they are not always necessary for general
data science purposes. These types of models are the blackest of black boxes.
It is impossible to explain the reasons behind the model’s predictions.

However, learning about these complex models is fascinating for research,
and future volumes of this series will likely include more information about
these structures.

16.0.3 Our Approach to the Challenge

So far, we’ve worked only with single model systems. These models that
contain ensembles that are “built in”, such as random forests and gradient
boosting machines (GBM). However, it is possible to create higher-level en-
sembles of these models. We used a total of 20 models, which included ten
deep neural networks and ten gradient boosting machines. Our deep neural
network system provided one prediction, and the gradient boosting machines
provided the other. The program blended these two predictions with a simple

294 Modeling with Neural Networks

ratio. Then we normalized the resulting prediction vector so that the sum
equaled 1.0 (100%). Figure 16.5 shows the ensemble model:

Figure 16.5: Our Challenge Group Entry

You can find our entry, written in Python, at the following URL:
https://github.com/jeffheaton/kaggle-otto-group

16.1 Modeling with Deep Learning

To stay within the scope of this book, we will present a solution to the Kaggle
competition based on our entry. Because gradient boosting machines (GBM)
are beyond the subject matter of this book, we will focus on using a deep neural
network. To introduce ensemble learning, we will use bagging to combine ten
trained neural networks together. Ensemble methods, such as bagging, will
usually cause the aggregate of ten neural networks to score better than a single
neuron. If you would like to use gradient boosting machines and replicate our
solution, see the link provided above for the source code.

16.1.1 Neural Network Structure

For this neural network, we used a deep learning structure composed of dense
layers and dropout layers. Because this structure was not an image network,
we did not use convolutional layers or max-pool layers. These layer types
required that input neurons in close proximity have some relevance to each
other. However, the 93 input values that comprised the data set might not
have been relevant. Figure 16.6 shows the structure of the deep neural network:

https://github.com/jeffheaton/kaggle-otto-group

16.1 Modeling with Deep Learning 295

Figure 16.6: Deep Neural Network for the Challenge

As you can see, the input layer of the neural network had 93 neurons that
corresponded to the 93 input columns in the data set. Three hidden layers
had 256, 128 and 64 neurons each. Additionally, two dropout layers each had
layers of 256 and 128 neurons and a dropout probability of 20%. The output
was a softmax layer that classified the nine output groups. We normalized the
input data to the neural network to take their z-scores.

Our strategy was to use two dropout layers tucked between three dense
layers. We chose a power of 2 for the first dense layer. In this case we used 2
to the power of 8 (256). Then we divided by 2 to obtain each of the next two
dense layers. This process resulted in 256, 128 and then 64. The pattern of
using a power of 2 for the first layer and two more dense layers dividing by 2,
worked well. As the experiments continued, we tried other powers of 2 in the
first dense layer.

We trained the network with stochastic gradient descent (SGD). The pro-
gram divided the training data into a validation set and a training set. The

296 Modeling with Neural Networks

SGD training used only the training data set, but it monitored the validation
set’s error. We trained until our validation set’s error did not improve for
200 iterations. At this point, the training stopped, and the program selected
the best-trained neural network over those 200 iterations. We refer to this
process as early stopping, and it helps to prevent overfitting. When a neural
network is no longer improving the score on the validation set, overfitting is
likely occurring.

Running the neural network produces the following output:
Input (None , 93) produces 93 outputs
dense0 (None , 256) produces 256 outputs
dropout0 (None , 256) produces 256 outputs
dense1 (None , 128) produces 128 outputs
dropout1 (None , 128) produces 128 outputs
dense2 (None , 64) produces 64 outputs
output (None , 9) roduces 9 outputs
epoch t r a i n l o s s v a l i d l o s s t r a i n / va l v a l i d acc
−−−−−−− −−−−−−−−−−−− −−−−−−−−−−−− −−−−−−−−−−− −−−−−−−−−−−

1 1.07019 0.71004 1.50723 0.73697
2 0.78002 0.66415 1.17447 0.74626
3 0.72560 0.64177 1.13061 0.75000
4 0.70295 0.62789 1.11955 0.75353
5 0.67780 0.61759 1.09750 0.75724

. . .
410 0 .40410 0.50785 0.79572 0.80963
411 0.40876 0.50930 0.80260 0.80645

Early stopping .
Best v a l i d l o s s was 0 .495116 at epoch 211 .
Wrote submiss ion to f i l e l a s−submit . csv .
Wrote submiss ion to f i l e l a s−va l . csv .
Bagged LAS model : 1 , s c o r e : 0 .49511558950601003 , cur rent mlog :

0 .379456064667434 , bagged mlog : 0.379456064667434
Early stopping .
Best v a l i d l o s s was 0 .502459 at epoch 221 .
Wrote submiss ion to f i l e l a s−submit . csv .
Wrote submiss ion to f i l e l a s−va l . csv .
Bagged LAS model : 2 , s c o r e : 0 .5024587499599558 , cur rent mlog :

0 .38050303230483773 , bagged mlog : 0.3720715012362133
epoch t r a i n l o s s v a l i d l o s s t r a i n / va l v a l i d acc

−−−−−−− −−−−−−−−−−−− −−−−−−−−−−−− −−−−−−−−−−− −−−−−−−−−−−
1 1.07071 0.70542 1.51785 0.73658
2 0.77458 0.66499 1.16479 0.74670

16.1 Modeling with Deep Learning 297

. . .
370 0 .41459 0.50696 0.81779 0.80760
371 0.40849 0.50873 0.80296 0.80642
372 0.41383 0.50855 0.81376 0.80787

Early stopping .
Best v a l i d l o s s was 0 .500154 at epoch 172 .
Wrote submiss ion to f i l e l a s−submit . csv .
Wrote submiss ion to f i l e l a s−va l . csv .
Bagged LAS model : 3 , s c o r e : 0 .5001535314594113 , cur rent mlog :

0 .3872396776865103 , bagged mlog : 0.3721509601621992
. . .
Bagged LAS model : 4 , s c o r e : 0 .4984386022067697 , cur rent mlog :

0 .39710688423724777 , bagged mlog : 0.37481605169768967
. . .

In general, the neural network gradually decreases its training and validation
error. If you run this example, you might see different output, based on the
programming language from which the example originates. The above output
is from Python and the Lasange/NoLearn frameworks.

It is important to understand why there is a validation error and a training
error. Most neural network training algorithms will separate the training set
into a training and validation set. This split might be 80% for training and
20% for validation. The neural network will use the 80% to train, and then it
reports that error as the training error. You can also use the validation set to
generate an error, which is the validation error. Because it represents the error
on the data that are not trained with the neural network, the validation error is
the most important measure. As the neural network trains, the training error
will continue to drop even if the neural network is overfitting. However, once
the validation error stops dropping, the neural network is probably beginning
to overfit.

16.1.2 Bagging Multiple Neural Networks

Bagging is a simple yet effective method to ensemble multiple models together.
The example program for this chapter trains ten neural networks indepen-
dently. Each neural network will produce its own set of nine probabilities that
correspond to the nine classes provided by Kaggle. Bagging simply takes the
average of each of these nine Kaggle-provided classes. Listing 16.1 provides

298 Modeling with Neural Networks

the pseudocode to perform the bagging:

Listing 16.1: Bagging Neural Network
Fina l r e s u l t s i s a matrix wi th rows = to rows in t r a i n i n g s e t
Columns = number o f outcomes (1 f o r reg re s s i on , or c l a s s count

f o r c l a s s i f i c a t i o n)
f i n a l r e s u l t s = [] []
for i from 1 to 5 :

network = t ra in neu ra l n e twork ()
r e s u l t s = eva luate network (network)
f i n a l r e s u l t s = f i n a l r e s u l t s + r e s u l t s

Take the average
f i n a l w e i g h t s = weights / 5

We performed the bagging on the test data set provided by Kaggle. Although
the test provided the 93 columns, it did not tell us the classes that it supplied.
We had to produce a file that contained the ID of the item for which we were
answering and then the nine probabilities. On each row, the probabilities
should sum to 1.0 (100%). If we submitted a file that did not sum to 1.0,
Kaggle would have scaled our values so that they did sum to 1.0.

To see the effects of bagging, we submitted two test files to Kaggle. The
first test file was the first neural network that we trained. The second test file
was the bagged average of all ten. The results were as follows:

• Best Single Network: 0.3794

• Five Bagged Networks: 0.3717

As you can see, the bagged networks achieved a better score than a single
neural network. The complete results are shown here:
Bagged LAS model : 1 , s c o r e : 0 .4951 , cur rent mlog : 0 .3794 , bagged

mlog : 0 .3794
Bagged LAS model : 2 , s c o r e : 0 .5024 , cur rent mlog : 0 .3805 , bagged

mlog : 0 .3720
Bagged LAS model : 3 , s c o r e : 0 .5001 , cur rent mlog : 0 .3872 , bagged

mlog : 0 .3721
Bagged LAS model : 4 , s c o r e : 0 .4984 , cur rent mlog : 0 .3971 , bagged

mlog : 0 .3748

16.2 Chapter Summary 299

Bagged LAS model : 5 , s c o r e : 0 .4979 , cur rent mlog : 0 .3869 , bagged
mlog : 0 .3717

As you can see, the first neural network had a multi-class log loss (mlog)
error of 0.3794. The mlog measure was discussed in Chapter 5, “Training
& Evaluation.” The bagged score was the same because we had only one
network. The amazing part happens when we bagged the second network to
the first. The current scores of the first two networks were 0.3794 and 0.3804.
However, when we bagged them together, we had 0.3720, which was lower than
both networks. Averaging the weights of these two networks produced a new
network that was better than both. Ultimately, we settled on a bagged score
of 0.3717, which was better than any of the previous single network (current)
scores.

16.2 Chapter Summary

In the final chapter of this book, we showed how to apply deep learning to a
real-world problem. We trained a deep neural network to produce a submission
file for the Kaggle Otto Group Product Classification Challenge. We used
dense and dropout layers to create this neural network.

We can utilize ensembles to combine several models into one. Usually,
the resulting ensemble model will achieve better scores than the individual
ensemble methods. We also examined how to bag ten neural networks together
and generate a Kaggle submission CSV.

After analyzing neural networks and deep learning in this final chapter as
well as the previous chapters, we hope that you have learned new and useful
information. If you have any comments about this volume, we would love
to hear from you. In the future, we plan to create additional editions of the
volumes to include more technologies. Therefore, we would be interested in
discovering your preferences on the technologies that you would like us to
explore in future editions. You can contact us through the following website:

http://www.jeffheaton.com

http://www.jeffheaton.com

301

Appendix A

Examples

• Downloading Examples

• Structure of Example Download

• Keeping Updated

A.1 Artificial Intelligence for Humans

These examples are part of a series of books that is currently under develop-
ment. Check the website to see which volumes have been completed and are
available:

http://www.heatonresearch.com/aifh
The following volumes are planned for this series:

• Volume 0: Introduction to the Math of AI

• Volume 1: Fundamental Algorithms

• Volume 2: Nature-Inspired Algorithms

• Volume 3: Deep Learning and Neural Networks

http://www.heatonresearch.com/aifh

302 Examples

A.2 Latest Versions

In this appendix, we describe how to obtain the Artificial Intelligence for
Humans (AIFH) book series examples.

This area is probably the most dynamic of the book. Computer languages
are always changing and adding new versions. We will update the examples as
it becomes necessary, fixing bugs and making corrections. As a result, make
sure that you are always using the latest version of the book examples.

Because this area is so dynamic, this file may become outdated. You can
always find the latest version at the following location:

https://github.com/jeffheaton/aifh

A.3 Obtaining the Examples

We provide the book’s examples in many programming languages. Core ex-
ample packs exist for Java, C#, C/C++, Python, and R for most volumes.
Volume 3, as of publication, includes Java, C#, and Python. Other languages,
such as R and C/C++ are planned. We may have added other languages since
publication. The community may have added other languages as well. You
can find all examples at the GitHub repository:

https://github.com/jeffheaton/aifh
You have your choice of two different ways to download the examples.

A.3.1 Download ZIP File

GitHub provides an icon that allows you to download a ZIP file that contains
all of the example code for the series. A single ZIP file has all of the examples
for the series. As a result, we frequently update the contents of this ZIP. If
you are starting a new volume, it is important that you verify that you have
the latest copy. You can perform the download from the following URL:

https://github.com/jeffheaton/aifh
You can see the download link in Figure A.1:

https://github.com/jeffheaton/aifh
https://github.com/jeffheaton/aifh
https://github.com/jeffheaton/aifh

A.4 Example Contents 303

Figure A.1: GitHub

A.3.2 Clone the Git Repository

You can obtain all the examples with the source control program git if it is
installed on your system. The following command clones the examples to your
computer: (Cloning simply refers to the process of copying the example files.)

g i t c l one https : // g i t h u b . com/ j e f f h e a t o n / a i f h . g i t

You can also pull the latest updates with the following command:
g i t p u l l

If you would like an introduction to git, refer to the following URL:
http://git-scm.com/docs/gittutorial

A.4 Example Contents

The entire Artificial Intelligence for Humans series is contained in one down-
load that is a zip file.

Once you open the examples file, you will see the contents in Figure A.2:

http://git-scm.com/docs/gittutorial

304 Examples

Figure A.2: Examples Download

The license file describes the license for the book examples. All of the
examples for this series are released under the Apache v2.0 license, a free and
open-source software (FOSS) license. In other words, we do retain a copyright
to the files. However, you can freely reuse these files in both commercial and
non-commercial projects without further permission.

Although the book source code is provided free, the book text is not pro-
vided free. These books are commercial products that we sell through a variety
of channels. Consequently, you may not redistribute the actual books. This
restriction includes the PDF, MOBI, EPUB and any other format of the book.
However, we provide all books in DRM-free form. We appreciate your support
of this policy because it contributes to the future growth of these books.

The download also includes a README file. The README.md is a
“markdown” file that contains images and formatting. This file can be read
either as a standard text file or in a markdown viewer. The GitHub browser
automatically formats MD files. For more information on MD files, refer to
the following URL:

https://help.github.com/articles/github-flavored-markdown
You will find a README file in many folders of the book’s examples. The

README file in the examples root (seen above) has information about the
book series.

You will also notice the individual volume folders in the download. These
are named vol1, vol2, vol3, etc. You may not see all of the volumes in the

https://help.github.com/articles/github-flavored-markdown

A.4 Example Contents 305

download because they have not yet been written. All of the volumes have the
same format. For example, if you open Volume 3, you will see the contents
listed in Figure A.3. Other volumes will have a similar layout, depending on
the languages that are added.

Figure A.3: Inside Volume 3 (other volumes have same structure)

Again, you see the README file that contains information unique to
this particular volume. The most important information in the volume level
README files is the current status of the examples. The community often
contributes example packs. As a result, some of the example packs may not
be complete. The README for the volume will let you know this important
information. The volume README also contains the FAQ for a volume.

You should also see a file named “aifh vol3.RMD”. This file contains the R
markdown source code that we used to create many charts in the book. We
produced nearly all the graphs and charts in the book with the R program-
ming language. The file ultimately allows you to see the equations behind
the pictures. Nevertheless, we do not translate this file to other programming
languages. We utilize R simply for the production of the book. If we used
another language, like Python, to produce some of the charts, you would see
a “charts.py” along with the R code.

Additionally, the volume currently has examples for C#, Java, and Python.
However, you may see that we add other languages. So, always check the
README file for the latest information on language translations.

306 Examples

Figure A.4 shows the contents of a typical language pack:

Figure A.4: The Java Language Pack

Pay attention to the README files. The README files in a language
folder are important because you will find information about the Java ex-
amples. If you have difficulty using the book’s examples with a particular
language, the README file should be your first step to solving the problem.
The other files in the above image are all unique to Java. The README file
describes these files in much greater detail.

A.5 Contributing to the Project 307

A.5 Contributing to the Project

If you would like to translate the examples to a new language or if you have
found an error in the book, you can help. Fork the project and push a com-
mit revision to GitHub. We will credit you among the growing number of
contributors.

The process begins with a fork. You create an account on GitHub and fork
the AIFH project. This step creates a new project that has a copy of the AIFH
files. You will then clone your new project through GitHub. Once you make
your changes, you submit a “pull request.” When we receive this request, we
will evaluate your changes/additions and merge it with the main project.

You can find a more detailed article on contributing through GitHub at
this URL:

https://help.github.com/articles/fork-a-repo

https://help.github.com/articles/fork-a-repo

309

References

This section lists the reference materials for this book.

Ackley, H., Hinton, E., & Sejnowski, J. (1985). A learning algorithm for
Boltzmann machines. Cognitive Science, 147-169.

Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R., Desjardins,
G. Bengio, Y. (2010, June). Theano: a CPU and GPU math expression
compiler. In Proceedings of the python for scientific computing conference
(SciPy). (Oral Presentation)

Broomhead, D., & Lowe, D. (1988). Multivariable functional interpolation
and adaptive networks. Complex Systems, 2, 321-355.

Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation
of gated recurrent neural networks on sequence modeling. CoRR,
abs/1412.3555.

Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14 (2),
179-211.

Fukushima, K. (1980). Neocognitron: A self-organizing neural network
model for a mechanism of pattern recognition unaffected by shift in position.
Biological Cybernetics, 36, 193-202.

Garey, M. R., & Johnson, D. S. (1990). Computers and intractability; a guide
to the theory of np-completeness. New York, NY, USA: W. H. Freeman & Co.

310 References

Glorot, X., Bordes, A., & Bengio, Y. (2011). Deep sparse rectifier neural
networks. In G. J. Gordon, D. B. Dunson, & M. Dudk (Eds.), Aistats (Vol.
15, p. 315-323). JMLR.org.

Hebb, D. (2002). The organization of behavior: a neuropsychological theory.
Mahwah N.J.: L. Erlbaum Associates.

Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., & Salakhutdinov,
R. (2012). Improving neural networks by preventing co-adaptation of feature
detectors. CoRR, abs/1207.0580 .

Hopfield, J. J. (1988). Neurocomputing: Foundations of research. In J. A.
Anderson & E. Rosenfeld (Eds.), (pp. 457-464). Cambridge, MA, USA: MIT
Press.

Hopfield, J. J., & Tank, D. W. (1985). “Neural” computation of decisions in
optimization problems. Biological Cybernetics, 52, 141-152.

Hornik, K. (1991, March). Approximation capabilities of multilayer
feedforward networks. Neural Networks, 4 (2), 251-257.

Jacobs, R. A. (1988). Increased rates of convergence through learning rate
adaptation. Neural Networks, 1 (4), 295-307.

Jacobs, R., & Jordan, M. (1993, Mar). Learning piecewise control strategies
in a modular neural network architecture. IEEE Transactions on Systems,
Man and Cybernetics, 23 (2), 337-345.

Jordan, M. I. (1986). Serial order: A parallel distributed processing approach
(Tech. Rep. No. ICS Report 8604). Institute for Cognitive Science,
University of California, San Diego.

Kalman, B., & Kwasny, S. (1992, Jun). Why TANH: choosing a sigmoidal
function. In Neural networks, 1992. IJCNN, International Joint Conference
on Neural Networks (Vol. 4, p. 578-581 vol.4).

311

Kamiyama, N., Iijima, N., Taguchi, A., Mitsui, H., Yoshida, Y., & Sone, M.
(1992, Nov). Tuning of learning rate and momentum on back-propagation.
In Singapore ICCS/ISITA ’92. ’Communications on the move’ (p. 528-532,
vol.2).

Keogh, E., Chu, S., Hart, D., & Pazzani, M. (1993). Segmenting time series:
A survey and novel approach. In an edited volume, data mining in time
series databases. Published by World Scientific Publishing Company (pp.
1-22).

Kohonen, T. (1988). Neurocomputing: Foundations of research. In J. A.
Anderson & E. Rosenfeld (Eds.), (pp. 509-521). Cambridge, MA, USA: MIT
Press.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (n.d.). Imagenet classification
with deep convolutional neural networks. In Advances in neural information
processing systems (p. 2012).

LeCun, Y., Bottou, L., Bengio, Y., & Haner, P. (1998). Gradient-based
learning applied to document recognition. In Proceedings of the IEEE
(pp.2278-2324).

Maas, A. L., Hannun, A. Y., & Ng, A. Y. (2013). Rectifier nonlinearities
improve neural network acoustic models. In International conference on
machine learning (ICML).

van der Maaten, L., & Hinton, G. (n.d.). Visualizing high-dimensional data
using t-SNE. Journal of Machine Learning Research (JMLR), 9, 2579-2605.

Marquardt, D. (1963). An algorithm for least-squares estimation of nonlinear
parameters. SIAM Journal on Applied Mathematics, 11 (2), 431-441.

Matviykiv, O., & Faitas, O. (2012). Data classification of spectrum analysis
using neural network. Lviv Polytechnic National University.

312 References

McCulloch, W., & Pitts, W. (1943, December 21). A logical calculus of the
ideas immanent in nervous activity. Bulletin of Mathematical Biology, 5 (4),
115-133.

Mozer, M. C. (1995). Backpropagation. In Y. Chauvin & D. E. Rumelhart
(Eds.), (pp. 137{169). Hillsdale, NJ, USA: L. Erlbaum Associates Inc.

Nesterov, Y. (2004). Introductory lectures on convex optimization: a basic
course. Kluwer Academic Publishers.

Ng, A. Y. (2004). Feature selection, l1 vs. l2 regularization, and rotational
invariance. In Proceedings of the twenty first international conference on
machine learning (pp. 78-). New York, NY, USA: ACM.

Neal, R. M. (1992, July). Connectionist learning of belief networks. Artificial
Intelligence, 56 (1), 71-113.

Riedmiller, M., & Braun, H. (1993). A direct adaptive method for faster
backpropagation learning: The RPROP algorithm. In IEEE international
conference on neural networks (pp. 586-591).

Robinson, A. J., & Fallside, F. (1987). The utility driven dynamic error
propagation network (Tech. Rep. No. CUED/F-INFENG/TR.1).
Cambridge: Cambridge University Engineering Department.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1988). Neurocomputing:
Foundations of research. In J. A. Anderson & E. Rosenfeld (Eds.),
(pp.696-699). Cambridge, MA, USA: MIT Press.

Schmidhuber, J. (2012). Multi-column deep neural networks for image
classification. In Proceedings of the 2012 IEEE conference on computer
vision and pattern recognition (cvpr) (pp. 3642-3649). Washington, DC,
USA: IEEE Computer Society.

Sjberg, J., Zhang, Q., Ljung, L., Benveniste, A., Deylon, B., yves Glorennec,
P., Juditsky, A. (1995). Nonlinear black-box modeling in system
identification: a unified overview. Automatica, 31, 1691-1724.

313

Snoek, J., Larochelle, H., & Adams, R. P. (2012). Practical bayesian
optimization of machine learning algorithms. In F. Pereira, C. Burges, L.
Bottou, & K. Weinberger (Eds.), Advances in neural information processing
systems 25 (pp. 2951{2959). Curran Associates, Inc.

Stanley, K. O., & Miikkulainen, R. (2002). Evolving neural networks through
augmenting topologies. Evolutionary Computation, 10 (2), 99-127.

Stanley, K. O., DAmbrosio, D. B., & Gauci, J. (2009, April). A
hypercubebased encoding for evolving large-scale neural networks. Artificial
Life, 15 (2), 185-212.

Teh, Y. W., & Hinton, G. E. (2000). Rate-coded restricted Boltzmann
machines for face recognition. In T. K. Leen, T. G. Dietterich, & V. Tresp
(Eds.), Nips (p. 908-914). MIT Press.

Werbos, P. J. (1988). Generalization of backpropagation with application to
a recurrent gas market model. Neural Networks, 1.

Zeiler, M. D., Ranzato, M., Monga, R., Mao, M. Z., Yang, K., Le, Q. V.,
Hinton, G. E. (2013). On rectified linear units for speech processing. In
ICASSP (p. 3517-3521). IEEE.

315

Index

activation function, xxvii, xlv, li, 1, 3,
5, 6, 8, 9, 11–18, 20, 23, 25,
30, 50, 63, 69, 83, 84, 88, 96,
119, 121–124, 150, 160, 161,
173, 177, 193, 195, 204, 205,
214, 215, 219, 229, 254, 259,
264–268, 271

algebra, 123, 178
algorithm, xxvii, xxxvi, xlv, 1, 2, 25,

30, 38, 43, 48–50, 58, 62, 63,
66, 70, 73–75, 77, 80, 82, 89,
93, 94, 107, 110, 113, 114, 126,
127, 129, 130, 133–135, 137,
140–144, 146, 147, 149, 150,
153–155, 158, 159, 169, 172,
175–178, 180, 181, 184, 188–
190, 199, 207, 209–214, 218–
220, 224–228, 231, 234, 239,
243, 248, 251, 258, 259, 269,
272, 274, 277–282, 297

annealing, 50, 54, 62, 63, 66, 70, 94,
100, 107, 108, 110, 199, 224,
226, 227, 248

architecture, xxvii, xxxvii, li, 1, 2, 6,
7, 26, 29, 41, 62, 63, 65, 74,
147, 173, 184, 197–199, 207,
209, 238, 245, 246, 257, 258,
269

artificial intelligence, xxiii, xxiv, xxxvi,
89, 285

axis, 37, 77, 100, 162, 215, 217, 278

backpropagation, xxvii, 66, 94, 113,
118, 121, 124–130, 133–135, 137,
140, 141, 144, 147, 177, 178,
193, 199, 205, 224, 226, 227,
248, 251, 263

bagged, 298, 299
belief network, 181
bias, xlvii, 9, 20–23, 25, 30, 53, 54,

59, 69, 72, 81, 120, 145, 150,
162, 189, 191, 192, 225–228,
230, 231, 243

bias neuron, 9, 72, 120, 145, 150, 230,
231, 243

biologically plausible, 47, 159
bmi, 288, 290, 293, 298, 299, 307

calculated, 3, 18, 30, 41, 53, 54, 57,
69, 78, 79, 119, 120, 122, 123,
125, 126, 130, 137, 139–141,
145, 152, 189, 191, 192, 203,
224, 227, 228, 281, 292

calculus, 116, 118
classification, xlv–xlvii, 17, 30, 66, 76,

81, 83, 94–96, 103, 104, 106,
173, 182, 186, 199, 205, 271,

316 INDEX

272, 274, 282
clustered, 41, 63
compositional, 149, 159, 161, 169
computer vision, xlv, 195, 197, 198,

200, 207
confusion matrix, 272, 273, 281, 282
connection, vii, li, 1, 6, 11, 25, 44, 45,

52, 65, 69, 76, 114, 117, 120,
145, 146, 150–152, 154, 159,
174, 175, 185, 210, 211, 219,
225, 228, 230, 234, 235, 238,
243–246, 258

context, 10, 11, 244–248, 250–254
context neuron, 10, 11, 244–248, 252,

254
contrastive divergence, 188, 189
convolution, xxviii, xlv, 168, 174, 175,

181, 195, 197, 200–203, 205–
207, 228, 257, 268, 294

convolutional, xlv, 168, 174, 175, 181,
195, 197, 200–203, 205–207, 228,
268, 294

cross entropy error, 119, 120, 122
crossover, 153–155, 157–159

damping factor, 141, 143
data scientist, li, 285, 286, 290
delta, 49, 50, 53, 119, 120, 127, 130,

137, 141
dense layer, 174, 204–207, 229, 230,

294, 295
derivative, 15, 110, 114, 116, 118, 119,

121–124, 129, 130, 141–146, 189,
227, 228, 263

digit, xlv, xlvi, 83, 178, 182–184, 205–
207, 215, 232, 272–274, 277,

278, 280
downsample, 203, 207
dropout, xxviii, 175, 176, 200, 228–

234, 257, 282, 294, 295, 299
dropout layer, 175, 176, 200, 228–231,

233, 234, 282, 294, 295, 299

ensemble, li, 231, 232, 290, 292–294,
298, 299

ensemble learning, 290, 293, 294
ensemble model, 294, 299
equilibrium, 47, 54, 60
error, xl, xli, xlv, 41, 95, 96, 99, 100,

106, 110, 114–116, 118–120, 122,
125–130, 135, 141, 142, 144,
146, 194, 209, 210, 213, 214,
219, 226, 227, 233, 234, 242,
254, 259, 260, 263, 266, 271,
272, 296, 297, 299, 307

error function, 114, 116, 118–120, 122,
129, 130, 144

false negative, 95, 96, 101
false positive, 95, 96, 99–101
feature, ix, xlvii, xlviii, li, 1, 43, 65,

81, 82, 88, 89, 134, 164, 168,
169, 172, 182, 195, 198, 200,
206, 207, 225, 234, 247, 253,
254, 268, 279, 281, 287, 292,
293

feedforward, xxvii, xxviii, xli, 7, 14,
30, 43, 50, 51, 63, 65, 66, 76,
89, 90, 107, 108, 117, 123, 147,
150, 152, 174, 177, 178, 181,
182, 193, 199, 204, 205, 207,
228, 235, 237–239, 244, 252–
254

INDEX 317

genetic, 58, 94, 149, 150, 153–155, 158,
169, 199

genetic algorithm, 58, 94, 149, 150,
153–155, 158, 169, 199

genome, 150, 153–155, 157–162, 164
gradient, 50, 113–116, 118, 120–122,

124–130, 133–135, 137–139, 141–
144, 147, 177–179, 189–191, 224,
226–228, 252, 261–263, 294, 296

gradient boosting, 179, 294
gradient calculation, 114, 120, 121, 144
gradient descent, 50, 113, 114, 125–

127, 129, 130, 133, 141, 143,
189, 296

handwritten digit, xlv, 178, 182, 205,
232, 272

hidden layer, 6, 8, 16, 17, 51, 65, 66,
74, 89, 90, 145, 150, 159, 173,
194, 195, 209, 233, 235, 238,
246, 247, 254, 266, 267, 269,
271, 295

hidden neuron, 8, 11, 52, 53, 90, 145,
150, 184, 188–191, 209, 213,
214, 216, 217, 219, 228, 245,
246, 250, 257, 261, 266–268

hyper-parameter, 152, 165, 184, 200,
202–205, 209, 210, 213, 214,
216–219, 229, 231–233, 254, 257,
259, 264, 268, 269, 290

hyperbolic tangent, xxvii, 14–17, 25,
63, 84, 96, 121, 123, 124, 205,
264, 265, 268

innovation, 63, 154, 155, 159
input, xxxvii–xl, xlii, xliii, xlvi, xlvii,

l, 3–13, 17, 18, 20, 21, 23–25,

30–37, 41, 45, 47, 48, 51, 63,
65, 66, 69, 72, 77, 78, 80, 81,
83–85, 87–90, 94, 95, 103, 118,
120, 126, 150–152, 161, 162,
165, 166, 168, 169, 176, 182,
184, 185, 188, 189, 192–194,
198, 199, 202, 203, 206, 225,
230, 233–235, 237–240, 243–
246, 248–250, 253, 254, 265,
266, 269, 271, 274, 278, 281,
293–295

input layer, xxxvii–xxxix, 30, 51, 66,
72, 90, 176, 230, 235, 238, 243,
295

input neuron, xlii, xliii, 5–9, 31, 33,
41, 63, 69, 89, 118, 120, 150,
166, 225, 230, 233, 234, 239,
240, 243, 246, 248, 271, 274,
294

input vector, 7, 34, 37, 69, 80, 188,
192, 198, 237, 278

iris, xlvi–xlviii, 17–19, 77, 80–83, 102,
103, 108, 274

iteration, xl, xli, 33, 34, 41, 57, 73,
100, 107, 126–129, 135, 137,
139, 140, 143, 190, 191, 194,
214–217, 226, 229, 231, 232,
234, 242, 247, 251, 253, 259,
263, 266, 296

l1, 305
l2, 305
labeled data, 172, 173, 193, 195
layer, xxvii, xxviii, xxxvii–xxxix, xlv,

li, 1, 6–9, 11, 13, 16, 17, 25, 30,
44, 51, 63, 65, 66, 72, 74, 76,

318 INDEX

81, 89, 90, 117, 119, 122, 145,
150, 151, 159, 171, 173–176,
180, 181, 183–185, 187, 188,
192–195, 199–207, 209, 216, 219,
228–231, 233–235, 238, 243–
247, 254, 257, 265–269, 271,
282, 293–295, 299

learning, xxvi, xxviii, xlv, xlvi, l, 1, 6,
8, 11, 34, 38, 41, 43, 47, 51, 63,
76, 84, 95, 103, 106, 123, 127–
130, 134, 135, 140, 147, 169,
171–175, 177–181, 183, 189, 192,
193, 195, 209, 213, 223, 231,
259–264, 268, 269, 271, 282,
286, 290, 293, 294, 299

learning rate, 34, 38, 127–130, 134,
135, 140, 147, 192, 259–263,
269, 271

linear, xxvii, 12–14, 16, 17, 30, 54, 84,
88, 121, 122, 173, 178

link, xxviii, 36, 102, 152, 155, 157,
160, 238, 243, 266, 294, 302

local minimum, 128, 129, 141, 142
logical operator, 22, 23

matrix, 32, 44, 45, 47, 48, 50, 58–62,
141–143, 145, 211, 272, 273,
278, 281, 282

mini-batch, 127, 129
mlog, 299
model, xxviii, xlvii, 40, 41, 53, 68, 77,

81, 88, 103, 106, 178, 179, 181,
207, 209, 210, 213, 214, 217–
219, 231, 257, 281, 285, 286,
288, 290, 292–294, 298, 299

model selection, 207, 210, 214, 217–
219

momentum, 127–130, 133–135, 137, 147,
259–263, 269

mse, 6, 150, 246, 259
multiple output, 68, 119, 145
mutation, 153–155, 158, 159

neat, 150, 151
neighborhood function, 34–38
network architecture, xxxvii, li, 1, 2,

6, 7, 29, 63, 65, 197, 238, 257
neural network, xxvi–xxviii, xxxvi–xlvi,

xlviii, l, li, 1–3, 5–26, 29–33,
35, 38, 41, 43–46, 48, 50–53,
58, 62, 63, 65–70, 72–74, 76,
81–83, 85, 87–90, 93–108, 110,
113–119, 121, 122, 124–126, 128,
129, 133–135, 140–145, 147, 149,
150, 159, 161, 165–169, 171,
173–182, 184, 187, 191–193, 195,
197–200, 202, 204–207, 209–
214, 216–220, 223–228, 230–
235, 237–250, 252–254, 257–
259, 263–269, 271–274, 281, 282,
290, 294–299

neuron, xxvii, xxxvi–xxxviii, xl, xlii,
xliii, xlvi, li, 1–12, 17, 18, 20,
21, 23, 25, 29–35, 37, 38, 41,
44–48, 50, 52–54, 58, 59, 63,
66, 68–70, 72, 74, 83, 84, 89,
90, 96, 97, 102, 103, 114, 117–
120, 122, 145, 146, 150, 152,
154, 155, 157, 160–162, 165,
166, 168, 175, 176, 184, 185,
188–191, 193, 195, 204, 205,

INDEX 319

209–214, 216, 217, 219, 225,
226, 228–234, 238–240, 243–
248, 250–252, 254, 257–259, 261,
266–269, 271, 274, 294, 295

one-of-n, xlvii, xlviii, 81, 83, 84, 88
optimization algorithm, 50, 66, 70, 82,

94, 110, 199, 218, 226, 227,
248

output, xxxvii–xlii, 1, 3–23, 25, 30–35,
37, 41, 45, 51, 53, 63, 66–69,
72, 73, 77, 80, 81, 83, 84, 87–
90, 93, 95–97, 100, 102, 103,
106, 108, 114, 118–120, 122,
125, 126, 129, 141, 143–146,
150, 152, 161, 162, 165, 166,
168, 173, 176, 182, 185, 188,
189, 193, 194, 199, 201–206,
210–212, 226, 230, 232, 234,
235, 237–251, 253, 265–267, 271,
292, 293, 295–297

output layer, xxxvii–xxxix, 6, 7, 9, 11,
13, 16, 17, 30, 51, 66, 72, 90,
122, 150, 173, 176, 193, 194,
206, 235, 238, 243, 245, 246,
265, 267

output neuron, xl, xlii, 5, 7, 11, 18, 25,
30–35, 37, 41, 63, 66, 68, 83,
96, 97, 102, 103, 118, 119, 122,
145, 146, 150, 161, 162, 165,
166, 193, 205, 226, 239, 240,
246–248, 250, 251, 266, 271

overfitting, 175, 195, 200, 203, 210,
220, 223, 224, 227, 228, 231–
234, 269, 296, 297

parameter, 20, 21, 38, 48, 50, 75, 77,
80, 127, 134, 152, 165, 184,
200, 202–205, 209, 210, 213,
214, 216–219, 229, 231–233, 254,
257, 259, 264, 268, 269, 290

partial derivative, 114, 118, 122, 129,
141, 144–146, 227, 228, 263

partially labeled, 173, 193, 195
perturb, 154
phenotype, 159–162, 166
predict, xxviii, xli, xlii, xlviii, xlix, 1,

10, 66, 68, 74, 80, 81, 95, 96,
99–106, 178, 182, 235, 238–243,
246, 248, 254, 272–274, 288,
293, 294

probability, 17, 18, 53, 54, 75, 83, 84,
96, 105–107, 153, 154, 159, 187–
191, 194, 195, 205, 229, 231,
286, 288, 293, 295

propagation training, 94, 127, 135, 199
pruning, 207, 210–213, 219, 220, 234

quadratic error, 119, 120

random, 32, 33, 53, 54, 73–77, 94, 100,
107, 110, 117, 126, 127, 129,
159, 187–190, 217, 219, 232,
234, 258, 266, 294

recurrent, xli, 7, 10, 11, 151, 152, 237,
238, 243, 244, 246, 252–254

recurrent network, 237, 244, 254
regression, xlv, xlviii, 66, 68, 76, 81,

88, 89, 106, 173, 179, 182, 183,
188, 194, 195, 209, 248, 271

regularization, xxviii, 175–177, 195, 210,
220, 224–228, 234

320 INDEX

roc, xxvii, xxxviii, xl–xliii, xlv, xlvii,
1–3, 5, 7, 8, 10, 12, 20, 25, 30,
32, 34–36, 41, 47, 48, 54, 65,
69, 73, 76–78, 81–83, 86, 88,
90, 93, 94, 104, 106, 107, 113,
114, 116, 118, 121, 125–129,
135, 137, 144–146, 151, 157,
159, 162, 163, 173, 175, 177,
178, 186, 188, 191–193, 198,
202, 206, 207, 210, 211, 213–
220, 229, 231–233, 241, 243,
248, 254, 263, 266, 268, 274,
280, 286, 290, 295, 296, 303,
307

sampled, 187, 189, 192
sensitivity, 96–100
sigmoid, xxvii, 14–17, 20, 21, 25, 50,

63, 96, 121–124, 150, 160, 161,
189, 193, 204, 205, 214, 264–
266, 268

simulated annealing, 50, 54, 62, 63, 66,
70, 94, 100, 107, 108, 110, 199,
224, 226, 227, 248

slope, 20, 114, 116, 130, 141
softmax, 13, 16–19, 83, 84, 121, 122,

173, 188, 193, 205, 295
som, ix, xxiii, xxv–xxvii, xxxvi–xxxix,

xlii, xliii, xlv, 2, 7, 11, 38, 40,
45, 50, 52, 53, 56, 57, 74, 77,
83, 84, 86, 95, 102, 107, 115,
120, 121, 128–130, 135, 137,
139, 154, 158, 161, 168, 172,
181, 182, 186, 197, 198, 210,
211, 215, 219, 220, 223, 228,
229, 232, 243, 252, 254, 258,

269, 272, 275, 278–282, 285,
294, 305

sparse, 174, 225, 234
sparse connectivity, 174
species, xlvii, 17, 18, 81–83, 102, 103,

158, 159
specificity, 96, 97, 99, 100
stacked, 183–185
standard deviation, l, 74–76, 85, 86
stochastic, 50, 54, 113, 126, 127, 129,

130, 133, 181, 290, 296
stochastic gradient descent, 50, 113,

126, 127, 129, 130, 133, 296
substrate, 165, 166, 168
sunspots, xlix, l
supervised training, xl, xli, 66, 172,

173, 187, 193, 195

temporal, 235, 238
time-series, xlv
training, xxvii, xl, xli, xlv, l, 1, 8, 15,

16, 30, 32–34, 37, 38, 41, 46–
50, 63, 66, 73, 74, 77, 90, 93,
94, 104–108, 110, 113–119, 125–
130, 133–137, 140, 143, 144,
147, 161, 164–167, 169, 172,
173, 177, 178, 183, 186–188,
192, 193, 195, 198, 199, 203,
209, 210, 216, 217, 223–229,
231, 232, 234, 239–242, 248,
258, 259, 263–266, 269, 281,
287, 288, 296, 297

training algorithm, xxvii, 48, 50, 63,
73, 93, 94, 110, 113, 114, 130,
133, 135, 140, 143, 147, 178,
209, 210, 224, 226, 227, 231,

INDEX 321

258, 297
training rate, 128, 259
two-dimensional, 35, 36, 40

unsupervised training, xl, 173, 187, 193,
195

up-down algorithm, 188–190

validation, 90, 210, 266, 296, 297
vanishing gradient, 124, 177, 178
vector, xlvii, xlviii, 7, 8, 19, 32–38, 40,

59, 66, 69–72, 77–80, 82, 88,
89, 106, 107, 110, 122, 184,
188, 191, 192, 198, 204, 218,
237, 253, 254, 278, 288, 293,
294

video, xxvi, 177, 277
visible neuron, 52, 53, 190, 191
visualization, 272, 274, 277, 279–282,

290

z-score, 85–88, 295
z-score normalization, 85

	Introduction
	Series Introduction
	Programming Languages
	Online Labs
	Code Repositories
	Books Planned for the Series
	Other Resources

	Neural Networks Introduction
	The Kickstarter Campaign
	Background Information
	Neural Network Structure
	A Simple Example
	Training: Supervised and Unsupervised
	Miles per Gallon

	A Neural Network Roadmap
	Data Sets Used in this Book
	MNIST Handwritten Digits
	Iris Data Set
	Auto MPG Data Set
	Sunspots Data Set
	XOR Operator
	Kaggle Otto Group Challenge

	Neural Network Basics
	Neurons and Layers
	Types of Neurons
	Input and Output Neurons
	Hidden Neurons
	Bias Neurons
	Context Neurons
	Other Neuron Types

	Activation Functions
	Linear Activation Function
	Step Activation Function
	Sigmoid Activation Function
	Hyperbolic Tangent Activation Function

	Rectified Linear Units (ReLU)
	Softmax Activation Function
	What Role does Bias Play?

	Logic with Neural Networks
	Chapter Summary

	Self-Organizing Maps
	Self-Organizing Maps
	Understanding Neighborhood Functions
	Mexican Hat Neighborhood Function
	Calculating SOM Error

	Chapter Summary

	Hopfield & Boltzmann Machines
	Hopfield Neural Networks
	Training a Hopfield Network

	Hopfield-Tank Networks
	Boltzmann Machines
	Boltzmann Machine Probability

	Applying the Boltzmann Machine
	Traveling Salesman Problem
	Optimization Problems
	Boltzmann Machine Training

	Chapter Summary

	Feedforward Neural Networks
	Feedforward Neural Network Structure
	Single-Output Neural Networks for Regression

	Calculating the Output
	Initializing Weights
	Radial-Basis Function Networks
	Radial-Basis Functions
	Radial-Basis Function Networks

	Normalizing Data
	One-of-N Encoding
	Range Normalization
	Z-Score Normalization
	Complex Normalization

	Chapter Summary

	Training & Evaluation
	Evaluating Classification
	Binary Classification
	Multi-Class Classification
	Log Loss
	Multi-Class Log Loss

	Evaluating Regression
	Training with Simulated Annealing
	Chapter Summary

	Backpropagation Training
	Understanding Gradients
	What is a Gradient
	Calculating Gradients

	Calculating Output Node Deltas
	Quadratic Error function
	Cross Entropy Error Function

	Calculating Remaining Node Deltas
	Derivatives of the Activation Functions
	Derivative of the Linear Activation Function
	Derivative of the Softmax Activation Function
	Derivative of the Sigmoid Activation Function
	Derivative of the Hyperbolic Tangent Activation Function
	Derivative of the ReLU Activation Function

	Applying Backpropagation
	Batch and Online Training
	Stochastic Gradient Descent
	Backpropagation Weight Update
	Choosing Learning Rate and Momentum
	Nesterov Momentum

	Chapter Summary

	Other Propagation Training
	Resilient Propagation
	RPROP Arguments
	Data Structures
	Understanding RPROP
	Determine Sign Change of Gradient
	Calculate Weight Change
	Modify Update Values

	Levenberg-Marquardt Algorithm
	Calculation of the Hessian
	LMA with Multiple Outputs
	Overview of the LMA Process
	Chapter Summary

	NEAT, CPPN & HyperNEAT
	NEAT Networks
	NEAT Mutation
	NEAT Crossover
	NEAT Speciation

	CPPN Networks
	CPPN Phenotype

	HyperNEAT Networks
	HyperNEAT Substrate
	HyperNEAT Computer Vision

	Chapter Summary

	Deep Learning
	Deep Learning Components
	Partially Labeled Data
	Rectified Linear Units
	Convolutional Neural Networks
	Neuron Dropout
	GPU Training
	Tools for Deep Learning
	H2O
	Theano
	Lasagne and NoLearn
	ConvNetJS

	Deep Belief Neural Networks
	Restricted Boltzmann Machines
	Training a DBNN
	Layer-Wise Sampling
	Computing Positive Gradients
	Gibbs Sampling
	Update Weights & Biases
	DBNN Backpropagation
	Deep Belief Application

	Chapter Summary

	Convolutional Neural Networks
	LeNET-5
	Convolutional Layers
	Max-Pool Layers
	Dense Layers
	ConvNets for the MNIST Data Set
	Chapter Summary

	Pruning and Model Selection
	Understanding Pruning
	Pruning Connections
	Pruning Neurons
	Improving or Degrading Performance

	Pruning Algorithm
	Model Selection
	Grid Search Model Selection
	Random Search Model Selection
	Other Model Selection Techniques

	Chapter Summary

	Dropout and Regularization
	L1 and L2 Regularization
	Understanding L1 Regularization
	Understanding L2 Regularization

	Dropout Layers
	Dropout Layer
	Implementing a Dropout Layer

	Using Dropout
	Chapter Summary

	Time Series and Recurrent Networks
	Time Series Encoding
	Encoding Data for Input and Output Neurons
	Predicting the Sine Wave

	Simple Recurrent Neural Networks
	Elman Neural Networks
	Jordan Neural Networks
	Backpropagation through Time
	Gated Recurrent Units

	Chapter Summary

	Architecting Neural Networks
	Evaluating Neural Networks
	Training Parameters
	Learning Rate
	Momentum
	Batch Size

	General Hyper-Parameters
	Activation Functions
	Hidden Neuron Configurations

	LeNet-5 Hyper-Parameters
	Chapter Summary

	Visualization
	Confusion Matrix
	Reading a Confusion Matrix
	Generating a Confusion Matrix

	t-SNE Dimension Reduction
	t-SNE as a Visualization
	t-SNE Beyond Visualization

	Chapter Summary

	Modeling with Neural Networks
	Lessons from the Challenge
	The Winning Approach to the Challenge
	Our Approach to the Challenge

	Modeling with Deep Learning
	Neural Network Structure
	Bagging Multiple Neural Networks

	Chapter Summary

	Examples
	Artificial Intelligence for Humans
	Latest Versions
	Obtaining the Examples
	Download ZIP File
	Clone the Git Repository

	Example Contents
	Contributing to the Project

	References

