
Artificial Intelligence for
Humans, Volume 1:

Fundamental Algorithms

Artificial Intelligence for
Humans, Volume 1:

Fundamental Algorithms

Jeff Heaton

Heaton Research, Inc.
St. Louis, MO, USA

v

Do not make illegal copies of this
ebook

Title AIFH, Volume 1: Fundamental Algorithms
Author Jeff Heaton
Published November 26, 2013
Copyright Copyright 2013 by Heaton Research, Inc., All Rights Reserved.
ISBN 978-1493682225
Price 9.99 USD
File Created Mon Dec 09 18:18:57 CST 2013

This eBook is copyrighted material, and public distribution is prohibited. If
you did not receive this ebook from Heaton Research (http://www.heatonresearch.com),
or an authorized bookseller, please contact Heaton Research, Inc. to purchase
a licensed copy. DRM free copies of our books can be purchased from:

http://www.heatonresearch.com/book
If you did purchase this book, thankyou! Your purchase of this books

supports the Encog Machine Learning Framework. http://www.encog.org/

http://www.heatonresearch.com/book
http://www.encog.org/

Publisher: Heaton Research, Inc.
Artificial Intelligence for Humans, Volume 1: Fundamental Algorithms
December, 2013
Author: Jeff Heaton
Editor: WordsRU.com
ISBN: 978-1493682225

Copyright ©2013 by Heaton Research Inc., 1734 Clarkson Rd. #107, Chester-
field, MO 63017-4976. World rights reserved. The author(s) created reusable
code in this publication expressly for reuse by readers. Heaton Research, Inc.
grants readers permission to reuse the code found in this publication or down-
loaded from our website so long as (author(s)) are attributed in any application
containing the reusable code and the source code itself is never redistributed,
posted online by electronic transmission, sold or commercially exploited as a
stand-alone product. Aside from this specific exception concerning reusable
code, no part of this publication may be stored in a retrieval system, trans-
mitted, or reproduced in any way, including, but not limited to photo copy,
photograph, magnetic, or other record, without prior agreement and written
permission of the publisher.

Heaton Research, Encog, the Encog Logo and the Heaton Research logo
are all trademarks of Heaton Research, Inc., in the United States and/or other
countries.

TRADEMARKS: Heaton Research has attempted throughout this book
to distinguish proprietary trademarks from descriptive terms by following the
capitalization style used by the manufacturer.

The author and publisher have made their best efforts to prepare this
book, so the content is based upon the final release of software whenever
possible. Portions of the manuscript may be based upon pre-release versions
supplied by software manufacturer(s). The author and the publisher make no
representation or warranties of any kind with regard to the completeness or
accuracy of the contents herein and accept no liability of any kind including
but not limited to performance, merchantability, fitness for any particular
purpose, or any losses or damages of any kind caused or alleged to be caused
directly or indirectly from this book.

vii

SOFTWARE LICENSE AGREEMENT: TERMS AND
CONDITIONS

The media and/or any online materials accompanying this book that are
available now or in the future contain programs and/or text files (the “Soft-
ware”) to be used in connection with the book. Heaton Research, Inc. hereby
grants to you a license to use and distribute software programs that make use
of the compiled binary form of this book’s source code. You may not redis-
tribute the source code contained in this book, without the written permission
of Heaton Research, Inc. Your purchase, acceptance, or use of the Software
will constitute your acceptance of such terms.

The Software compilation is the property of Heaton Research, Inc. unless
otherwise indicated and is protected by copyright to Heaton Research, Inc.
or other copyright owner(s) as indicated in the media files (the “Owner(s)”).
You are hereby granted a license to use and distribute the Software for your
personal, noncommercial use only. You may not reproduce, sell, distribute,
publish, circulate, or commercially exploit the Software, or any portion thereof,
without the written consent of Heaton Research, Inc. and the specific copyright
owner(s) of any component software included on this media.

In the event that the Software or components include specific license re-
quirements or end-user agreements, statements of condition, disclaimers, lim-
itations or warranties (“End-User License”), those End-User Licenses super-
sede the terms and conditions herein as to that particular Software component.
Your purchase, acceptance, or use of the Software will constitute your accep-
tance of such End-User Licenses.

By purchase, use or acceptance of the Software you further agree to comply
with all export laws and regulations of the United States as such laws and
regulations may exist from time to time.

SOFTWARE SUPPORT

Components of the supplemental Software and any offers associated with
them may be supported by the specific Owner(s) of that material but they are
not supported by Heaton Research, Inc.. Information regarding any available
support may be obtained from the Owner(s) using the information provided
in the appropriate README files or listed elsewhere on the media.

viii

Should the manufacturer(s) or other Owner(s) cease to offer support or
decline to honor any offer, Heaton Research, Inc. bears no responsibility. This
notice concerning support for the Software is provided for your information
only. Heaton Research, Inc. is not the agent or principal of the Owner(s), and
Heaton Research, Inc. is in no way responsible for providing any support for
the Software, nor is it liable or responsible for any support provided, or not
provided, by the Owner(s).

WARRANTY

Heaton Research, Inc. warrants the enclosed media to be free of physical
defects for a period of ninety (90) days after purchase. The Software is not
available from Heaton Research, Inc. in any other form or media than that
enclosed herein or posted to www.heatonresearch.com. If you discover a defect
in the media during this warranty period, you may obtain a replacement of
identical format at no charge by sending the defective media, postage prepaid,
with proof of purchase to:

Heaton Research, Inc.
Customer Support Department
1734 Clarkson Rd #107
Chesterfield, MO 63017-4976
Web: www.heatonresearch.com
E-Mail: support@heatonresearch.com

DISCLAIMER

Heaton Research, Inc. makes no warranty or representation, either ex-
pressed or implied, with respect to the Software or its contents, quality, per-
formance, merchantability, or fitness for a particular purpose. In no event will
Heaton Research, Inc., its distributors, or dealers be liable to you or any other
party for direct, indirect, special, incidental, consequential, or other damages
arising out of the use of or inability to use the Software or its contents even
if advised of the possibility of such damage. In the event that the Software
includes an online update feature, Heaton Research, Inc. further disclaims

ix

any obligation to provide this feature for any specific duration other than the
initial posting.

The exclusion of implied warranties is not permitted by some states. There-
fore, the above exclusion may not apply to you. This warranty provides you
with specific legal rights; there may be other rights that you may have that
vary from state to state. The pricing of the book with the Software by Heaton
Research, Inc. reflects the allocation of risk and limitations on liability con-
tained in this agreement of Terms and Conditions.

SHAREWARE DISTRIBUTION

This Software may use various programs and libraries that are distributed
as shareware. Copyright laws apply to both shareware and ordinary com-
mercial software, and the copyright Owner(s) retains all rights. If you try a
shareware program and continue using it, you are expected to register it. In-
dividual programs differ on details of trial periods, registration, and payment.
Please observe the requirements stated in appropriate files.

xi

This book is dedicated to my wonderful
wife, Tracy and our two cockatiels

Cricket and Wynton.

xiii

Contents

Introduction xxi
0.1 Series Introduction . xxi

0.1.1 Programming Languages xxii
0.1.2 Online Labs . xxiii
0.1.3 Code Repositories . xxiii
0.1.4 Books Planned for the Series xxiv
0.1.5 Other Resources . xxv

0.2 Fundamental Algorithms Introduction xxvi
0.3 Structure of this Book . xxvi
0.4 The Kickstarter Campaign . xxix

1 Introduction to AI 1
1.1 Relationship to Human Brains 2

1.1.1 The Brain and Its World 4
1.1.2 Brain in a Vat . 5

1.2 Modeling Problems . 7
1.2.1 Data Classification . 7
1.2.2 Regression Analysis . 9
1.2.3 Clustering . 10
1.2.4 Time Series . 11

1.3 Modeling Input and Output 12

xiv CONTENTS

1.3.1 A Simple Example . 15
1.3.2 Miles per Gallon . 16
1.3.3 Presenting Images to Algorithms 18
1.3.4 Financial Algorithms 20

1.4 Understanding Training . 22
1.4.1 Evaluating Success . 22
1.4.2 Batch and Online Training 23
1.4.3 Supervised and Unsupervised Training 23
1.4.4 Stochastic and Deterministic Training 23

1.5 Chapter Summary . 24

2 Normalization 27
2.1 Levels of Measurement . 27

2.1.1 Quantitative Observations 30
2.2 Normalizing Observations . 31

2.2.1 Normalizing Nominal Observations 32
2.2.2 Normalizing Ordinal Observations 33
2.2.3 Denormalizing Ordinal Observations 35
2.2.4 Normalizing Quantitative Observations 37
2.2.5 Denormalizing Quantitative Observations 38

2.3 Other Methods of Normalization 39
2.3.1 Reciprocal Normalization 39
2.3.2 Reciprocal Denormalization 40
2.3.3 Understanding Equilateral Encoding 40
2.3.4 Implementing Equilateral Encoding 43

2.4 Chapter Summary . 47

3 Distance Metrics 51
3.1 Understanding Vectors . 51

CONTENTS xv

3.2 Calculating Vector Distance 53
3.2.1 Euclidean Distance . 53
3.2.2 Manhattan Distance 55
3.2.3 Chebyshev Distance 57

3.3 Optical Character Recognition 59
3.4 Chapter Summary . 62

4 Random Number Generation 65
4.1 PRNG Concepts . 66
4.2 Random Distribution Types 67
4.3 Roulette Wheels . 70
4.4 PRNG Algorithms . 71

4.4.1 Linear Congruential Generator 71
4.4.2 Multiply with Carry 73
4.4.3 Mersenne Twister . 74
4.4.4 Box Muller Transformation 76

4.5 Estimating PI with Monte Carlo 77
4.6 Chapter Summary . 79

5 K-Means Clustering 83
5.1 Understanding Training Sets 85

5.1.1 Unsupervised Training 85
5.1.2 Supervised Training 88

5.2 Understanding the K-Means Algorithm 88
5.2.1 Assignment Step . 89
5.2.2 Update Step . 90

5.3 Initializing the K-Means Algorithm 91
5.3.1 Random K-Means Initialization 92
5.3.2 Forgy K-Means Initialization 95

xvi CONTENTS

5.4 Chapter Summary . 97

6 Error Calculation 99
6.1 Sum of Squares Error . 100
6.2 Root Mean Square . 101
6.3 Mean Square Error . 101
6.4 Comparison of Error Calculation Methods 102

6.4.1 Partitioning Training Data 102
6.5 Chapter Summary . 104

7 Towards Machine Learning 107
7.1 Coefficients of a Polynomial 109
7.2 Introduction to Training . 111

7.2.1 Greedy Random Training 111
7.3 Radial Basis Networks . 114

7.3.1 Radial Basis Functions 114
7.3.2 Radial Basis Function Networks 118
7.3.3 Implementing an RBF Network 120
7.3.4 Using an RBF Network 125

7.4 Chapter Summary . 126

8 Optimization Training 129
8.0.1 Hill Climbing Training 129

8.1 Simulated Annealing . 133
8.1.1 Simulated Annealing Applications 134
8.1.2 Simulated Annealing Algorithm 134
8.1.3 Cooling Schedule . 138
8.1.4 Annealing Probability 139

8.2 Nelder Mead . 140
8.2.1 Reflection . 143

CONTENTS xvii

8.2.2 Expansion . 144
8.2.3 Contraction . 145

8.3 Finishing the Nelder Mead Algorithm 147
8.4 Chapter Summary . 148

9 Discrete Optimization 151
9.1 The Traveling Salesman Problem 152

9.1.1 Understanding the Traveling Salesman Problem 152
9.1.2 Implementing the Traveling Salesman Problem 153

9.2 Circular TSP . 155
9.3 The Knapsack Problem . 156

9.3.1 Understanding the Knapsack Problem 156
9.3.2 Implementing the Knapsack Problem 158

9.4 Chapter Summary . 160

10 Linear Regression 163
10.1 Linear Regression . 164

10.1.1 Least Squares Fitting 165
10.1.2 Least Squares Fitting Example 167
10.1.3 Anscombe’s Quartet 169
10.1.4 Abalone Data Set . 170

10.2 Generalized Linear Models . 170
10.2.1 Reweight Least Squares Training 173

10.3 Chapter Summary . 176

A Examples 179
A.1 Artificial Intelligence for Humans 179
A.2 Staying Up to Date . 180
A.3 Obtaining the Examples . 180

A.3.1 Download ZIP File . 181

xviii CONTENTS

A.3.2 Clone the Git Repository 181
A.4 Example Contents . 182
A.5 Contributing to the Project 186

References 187

CONTENTS xix

xxi

Introduction

• Series Introduction

• Computer Languages

• Prerequisite Knowledge

• Fundamental Algorithms

• Other Resources

• Structure of this Book

This is the first in a series of books covering select topics in Artificial In-
telligence (AI). Artificial Intelligence is a large field that encompasses many
sub-disciplines. The following sections introduce both the series and the first
volume.

0.1 Series Introduction

This series of books introduces the reader to a variety of popular topics in
Artificial Intelligence. By no means is this meant to be an exhaustive AI
resource–AI is a huge field, and a great deal of information is added on a daily
basis. Each book focuses on a specific area of AI.

xxii Introduction

The series teaches Artificial Intelligence concepts in a mathematically gen-
tle manner, which is why the series is named Artificial Intelligence for Humans.
Still:

• I assume the reader is proficient in at least one programming language.

• I assume the reader has a basic understanding of college algebra.

• I use topics and formulas from calculus, linear algebra, differential equa-
tions, and statistics.

• However, when explaining topics in bullet point 3, I do not assume the
reader is fluent in the topics described in the above bullet.

• I always follow concepts with real-world programming examples and
pseudo code, rather than relying solely on mathematical formulas.

The target audience for this book comprises programmers who are proficient
in at least one programming language. The book’s examples have been ported
to a number of programming languages.

0.1.1 Programming Languages

The actual book text stays at the pseudo code level. Example packs are
provided for Java, C#, R, C/C++, and Python. There is also a community
supplied port for the Scala programming language. Members of the community
are working on porting the examples to additional languages, so your favorite
language might have been ported since this printing. Check the book’s GitHub
repository for more information. The community is encouraged to help port to
other languages! If you would like to get involved, your help would be greatly
appreciated. Appendix A has more information to get you started.

0.1 Series Introduction xxiii

0.1.2 Online Labs

Many of the examples from this series are available to run online, using
HTML5. These examples use JavaScript and should run from mobile devices
that are capable of HTML5.

All online lab materials can be found at the following web site:
http://www.aifh.org
These online labs allow you to try out examples even when reading an

ebook from a mobile device.

0.1.3 Code Repositories

All of the code for this project is released under the Apache Open Source
License v2. It can be found at the following GitHub repository:

https://github.com/jeffheaton/aifh
The online labs, with Javascript Lab Examples, can be found at the fol-

lowing GitHub repository:
https://github.com/jeffheaton/aifh-html
Have you found something broken, misspelled, or otherwise botched? You

probably have. Fork the project and push a commit revision to GitHub. You
will be credited among the growing number of contributors. Refer to Appendix
A for more information on contributing code.

http://www.aifh.org
https://github.com/jeffheaton/aifh
https://github.com/jeffheaton/aifh-html

xxiv Introduction

0.1.4 Books Planned for the Series

The following volumes are planned for this series:

• Volume 0: Introduction to the Math of AI

• Volume 1: Fundamental Algorithms

• Volume 2: Nature Inspired Algorithms

• Volume 3: Neural Networks

• Volume 4: Support Vector Machines

• Volume 5: Probabilistic Learning

Volumes one through five will be produced in order. Volume zero is a “planned
prequel” that will be produced near the end of the series to focus on the
mathematical concepts introduced in the other volumes. Volumes one through
five will cover required mathematical concepts, while volume zero is planned
to be a recap and expansion of the mathematical concepts from the other
volumes.

Volume zero can be read at either the beginning or the end of the series.
Volume one should generally be read before the other volumes. Volume two
does contain some information useful for volume three. Figure 1 shows the
suggested reading order.

0.1 Series Introduction xxv

Figure 1: Reading the Volumes

Each volume can be read separately or as part of the series. Volume one
lays down foundational algorithms that are used in each of the subsequent
volumes. The algorithms of volume one are both foundational and useful in
their own right.

0.1.5 Other Resources

There are many other resources on the Internet that will be very useful to you
as you read through this series of books.

The first is the Khan Academy, which is a collection of YouTube videos
that demonstrate many areas of mathematics. If you need additional review
on any mathematical concept in this book, there is most likely a video on the
Khan Academy that covers it.

http://www.khanacademy.org/
Second is the Neural Network FAQ. This text-only resource has a great

deal of information on neural networks and other AI topics.
http://www.faqs.org/faqs/ai-faq/neural-nets/

http://www.khanacademy.org/
http://www.faqs.org/faqs/ai-faq/neural-nets/

xxvi Introduction

The Encog wiki has a fair amount of general information on machine learn-
ing, although the information found here is not necessarily tied to Encog.

http://www.heatonresearch.com/wiki/Main_Page
Finally, AI and neural networks can be discussed on the Encog forums.

These forums are fairly active and you are very likely to receive an answer
from myself or from one of the community members at the forum.

http://www.heatonresearch.com/forum

0.2 Fundamental Algorithms Introduction

To have a great building, you must have a great foundation. This book teaches
Artificial Intelligence algorithms such as dimensionality, distance metrics, clus-
tering, error calculation, hill climbing, linear regression and discrete learning.
These algorithms allow for the processing and recognition of patterns in data.
This is how sites such as Amazon and NetFlix suggest products to you.

These are not just foundational algorithms for the rest of the series, but
are very useful algorithms in their own right. All algorithms are explained
with numeric calculations that you can perform yourself.

0.3 Structure of this Book

Chapter one, “Introduction to AI,” introduces some of the basic concepts of
AI. These concepts are built upon both by this volume and the series. You will
see that most AI algorithms accept an input array of numbers and produce
an output array. Problems to be solved by AI are often modeled to this form.
Internally, the algorithm keeps additional arrays that effectively represent long
and short-term memory. These algorithms are trained by adjusting the long-
term memory to produce a desirable output for a given input.

Chapter two, “Normalizing Data,” shows how raw data is typically pre-
pared for many AI algorithms. Data is presented to an algorithm in the form
of an input array. Not all data is numeric and some is categorical. Exam-
ples of categorical data include color, shape, gender, species, and any other
non-numeric descriptive quality. Numeric data must often be normalized to a

http://www.heatonresearch.com/wiki/Main_Page
http://www.heatonresearch.com/forum

0.3 Structure of this Book xxvii

specific range. Numeric qualities are often normalized to a range between -1
and 1.

Chapter three, “Distance Metrics,” shows how data can be compared in
much the same way as we plot a distance between two points on a map. AI
often works with numeric arrays. These arrays hold input data, output data,
long-term memory, short-term memory, and other information. These arrays
are often called vectors. We can calculate the distances between these data
points in much the same way as we calculate the distance between two points.
Two-dimensional and three-dimensional points can be thought of as vectors of
length two and three, respectively. In AI, we often deal with spaces of much
higher dimensionality than three.

Chapter four, “Random Numbers,” shows how random numbers are cal-
culated and used by AI algorithms. This chapter begins by discussing the
difference between uniform and normal random numbers. Sometimes AI al-
gorithms call for each random number to have an equal probability. At other
times, random numbers must follow a distribution. The chapter additionally
discusses techniques for random number generation.

Chapter five, “K-Means Clustering,” shows how data can be grouped into
similar clusters. K-Means is an algorithm can be used by itself to group
data into groups by commonality. Additionally, K-Means is often used as a
component to other more complex algorithms. Genetic algorithms often use
K-Means to group populations into species with similar traits, while online
retailers often use clustering algorithms to break customers into clusters. Sales
suggestions can then be created based on the buying habits of members of the
same cluster.

Chapter six, “Error Calculation,” shows how the results of AI algorithms
can be evaluated. Error calculation is how we determine the effectiveness of
an algorithm, which can be done using a scoring function that evaluates the
effectiveness of a trained algorithm. A very common type of scoring function
simply contains input vectors and expected output vectors. This is called
training data. The algorithm is rated based on the distance between the
algorithm’s actual output and the expected output.

Chapter seven, “Towards Machine Learning,” introduces simple algorithms
that can be trained to analyze data and produce better results. Most AI
algorithms use a vector of weighted values to transform the input vector into

xxviii Introduction

a desired output vector. This vector of weighted values forms a sort of long-
term memory for the algorithm. Training is the process of adjusting this
memory to produce the desired output. This chapter shows how to construct
several simple models that can be trained and introduces relatively simple, yet
effective, training algorithms that can adjust this memory to provide better
output values. Simple random walks and hill climbing are two such means for
setting these weights.

Chapter eight, “Optimization Algorithms,” expands the algorithms intro-
duced in the previous chapter. These algorithms, which include Simulated
Annealing and Nelder Mead, can be used to quickly optimize the weights of
an AI model. This chapter shows how to adapt these optimization algorithms
to some of the models introduced in the previous chapter.

Chapter nine, “Discrete Optimization,” shows how to optimize data that is
categorical rather than numeric. Not every optimization problem is numeric,
as we see in the cases of discrete, or categorical, problems such as the Knap-
sack Problem and the Traveling Salesman Problem. This chapter shows that
Simulated Annealing can be adapted to either of these two problems. Sim-
ulated annealing can be used for continuous numeric problems and discrete
categorical problems.

Chapter ten, “Linear Regression,” shows how linear and non-linear equa-
tions can be used to learn trends and make predictions. The chapter introduces
simple linear regression and shows how to use it to fit data to a linear model.
This chapter will also introduce the General Linear Model (GLM), which can
be used to fit non-linear data.

0.4 The Kickstarter Campaign xxix

0.4 The Kickstarter Campaign

This series of books was launched in 2013 as the result of a successful Kick-
starter campaign. The home page for the Kickstarter project is shown in
Figure 2.

Figure 2: The Kickstarter Campaign

You can visit the original Kickstarter at the following link:
http://goo.gl/dGorA

http://goo.gl/dGorA

xxx Introduction

I would like to thank all of the Kickstarter backers of the project! Without
your support, this series might not exist. I would also like to extend a special
thanks to those backers who supported at the $100 and higher levels. They
are listed here, in order that they pledged.

Figure 3: Kickstarter 100 Dollar Level Supporters

Also a big thanks to Rick Cardarelle! His pledge of $358 pushed the project
to the $2,500 minimum requested amount. A very big thank you to Rory
Graves and Matic Potocnik porting the examples to Scala.

Thank you everyone–you are the best!

1

Chapter 1

Introduction to AI

• Relationship to Human Brains

• Modeling Input and Output

• Classification and Regression

• Time Series

• Training

Most laypeople think of Artificial Intelligence (AI) as a sort of artificial brain
and recall images from science fiction movies about robots. Such images have
very little to do with how AI is actually used in today’s world. It is true that AI
has many similarities to human brain function, but the significant distinction
is that Artificial Intelligence is artificial. AI does not need to pretend to be
biological.

Before we get too deep, I would like to introduce some very general con-
cepts about how you interact with an AI algorithm. The AI algorithm is the
technique that you are using to solve a problem. An AI algorithm is sometimes
called a model. There are many different AI algorithms, or models. Some of
the most common are Neural Networks, Support Vector Machines, Bayesian
networks, and Hidden Markov Models. This series of books covers many of
these models.

2 Introduction to AI

It is important for the AI practitioner understand how to represent a prob-
lem to an AI program, as this is the primary mode of interaction with an
AI algorithm. We will begin our foundation of knowledge in this topic by
exploring how the human brain interacts with its world.

1.1 Relationship to Human Brains

The purpose of AI is to allow a computer to function somewhat like a human
brain. However, this does not mean that AI seeks to emulate every aspect of
the human brain. The degree to which an AI algorithm matches the actual
functioning of the human brain is called biological plausibility.

Christof Koch, chief scientific officer of the Allen Institute for Brain Science,
calls the brain “the most complex object in the known universe.” (Koch, 2013)
In the context of AI, the brain is essentially an advanced piece of technology
that we must study, reverse engineer, and learn to emulate.

The brain is not the only piece of “advanced technology” that nature has
shared with us. Flight is another. Early airplanes attempted to emulate the
flapping wings of birds. Such airships are called ornithopters. These flapping
airships did not work very well, however. Figure 1.1 shows a patent diagram
for the Gray Goose Ornithopter.

1.1 Relationship to Human Brains 3

Figure 1.1: Gray Goose Ornithopter (US patent 1,730,758)

Biological birds were the only models for flying machines in existence
through the early 1900s. It seemed logical to emulate birds, as they were
excellent flyers. However, from experimenting with flying machines, humans
have learned not to follow the path of nature too closely. While we wanted
to emulate the end goal of flying, emulating exactly how natural bird flight
occurs did not result in an effective flying machine.

The abstraction of emulation occurs in many other contexts. My MacBook
Pro can emulate a Windows PC, and can also emulate a Commodore 64. A
C64 is somewhat different from my more modern laptop, in more than just
looks. The instruction set that drives a C64 is quite different from the Intel x86
instruction set common on many modern computers. When my Mac emulates
a C64, it does not emulate the actual transistors that make up a C64’s 6510
microprocessor. The emulation occurs at a higher level. This is the same
in AI. Some algorithms emulate neurons, while some, like my C64 emulator,
operate at a higher level. We focus on the end goal of providing functionality
in a PC context, rather than directly emulating all the processes that lead to
functionality in a brain.

4 Introduction to AI

What you want to do is more important than how. At the highest level,
there are similarities between a human brain and most AI algorithms. The
next section will examine these.

1.1.1 The Brain and Its World

Before we begin, let’s look at how the human brain works on an external level.
While we know relatively little about the internal operation of the brain, we
do know a fair amount about the external operation of the brain.

The brain is essentially a black box connected by nerves. These nerves
carry signals between the brain and the body. A certain set of inputs causes a
certain output. For example, feeling your finger about to touch a hot stove will
result in other nerves sending commands to your muscles to pull your finger
back.

It is also very important to note that the brain has an internal state.
Consider if you suddenly heard a horn. How you react is determined not just
by the stimuli of the horn, but where you are when you hear the horn. Hearing
a horn in the middle of a movie evokes a very different response than hearing
a horn when you are crossing a busy street. The knowledge of where you are
creates a certain internal state that causes your brain to react differently to
different contexts.

The order in which stimuli are received is also important. A common game
is to close your eyes and attempt to use only touch to determine what an object
is. When you grab the object, you do not instantly receive enough information
to determine what it is. Rather, you must grab the object and run your fingers
over it. As your fingers run over the object, you receive information that forms
an image of what the object is.

You can essentially think of the human brain as a black box with a series
of inputs and outputs. Our nerves provide our entire perception of the world.
The nerves are the inputs to the brain. There is actually a finite number of
inputs to a typical human brain.

Likewise, our only means to interact with the world are the outputs from
our nerves to our muscles. The output from the human brain is a function
of the inputs and internal state of the brain. In response to any input, the

1.1 Relationship to Human Brains 5

human brain will alter its internal state and produce output. The significance
of the order of the inputs is handled by the internal state of the brain.

1.1.2 Brain in a Vat

If our only interaction with reality is the inputs we receive from sensory inputs
and out actions through motor nerves, what actually is “reality”? Your brain
is hooked up to your body, but it could also be hooked up to a simulation, as
in the movie, The Matrix. So long as the output from your brain is producing
the expected inputs, would you know what was real and what was simulated?

This is a common philosophical thought experiment called “brain in a vat.”
Figure 1.2 illustrates the brain in a vat thought experiment. In the figure, the
brain believes that its body is walking a dog. But does the brain have a body?
Does the dog even exist? What does “exist” even mean? All we really know
is what our nerves tell us. (Sigiel, 1999)

6 Introduction to AI

Figure 1.2: Brain in a Vat

This experiment assumes that a person’s brain could be removed from
the body and provided life-support. Nerves would be connected to a super-
computer that would provide electrical impulses identical to those the brain
normally receives. The computer would then be simulating reality by includ-
ing appropriate responses to the brain’s output. The disembodied brain would
continue to have perfectly normal conscious experiences outside of the “real
world.” There are even philosophical theories that suggest we are living in a
simulation. (Bostrom, 2003)

One attempt to model an algorithm directly from the human brain is the
neural network. Neural networks are one small part of AI research, and the
neural network model aligns very closely with many of the AI algorithms that
you will learn in this series of books.

1.2 Modeling Problems 7

Computer based neural networks are not like the human brain in that they
are not general-purpose computation devices. Neural networks, as they cur-
rently exist, carry out very small, specific tasks. An AI algorithm experiences
its reality by providing output based on the algorithm’s internal state and the
input it is currently receiving. The “reality” that the algorithm is attached to
may change as the researcher experiments with the algorithm.

This model of inputs, outputs, and internal state holds true for most AI
algorithms, regardless of whether you are creating AI for a robot or a stock
picker. Of course, some algorithms are more complex than others.

1.2 Modeling Problems

Knowing how to model a real-world problem to a machine-learning algorithm
is critical. Different problems will lend themselves to different algorithms. At
the highest level, you will model your problem in one of four different ways:

• Data classification

• Regression analysis

• Clustering

• Time Series

Sometimes you will model one problem using several of these approaches. We
will examine each of these, beginning with data classification.

1.2.1 Data Classification

Classification attempts to determine the class in which the input data falls
into. Classification is usually a supervised training operation, which occurs
when the user provides data and expected results to the machine-learning
algorithm. In data classification, the expected result is identification of the
data class.

8 Introduction to AI

Supervised training always deals with known data. During training, machine-
learning algorithms are evaluated according to how well they classify known
data. The hope is that the algorithm, once trained, will be able to classify
unknown data as well.

Fisher’s Iris Dataset is an example of classification. (Fisher, 1936) This
dataset contains measurements of iris flowers. This is one of the most famous
datasets and is often used to evaluate machine-learning algorithms. The full
dataset is available at the following URL:

http://www.heatonresearch.com/wiki/Iris_Data_Set
Below is a small sampling from the iris dataset.

” Sepal Length” , ” Sepal Width” , ” Peta l Length” , ” Peta l Width” , ” Spec i e s
”

5 . 1 , 3 . 5 , 1 . 4 , 0 . 2 , ” s e t o s a ”
4 . 9 , 3 . 0 , 1 . 4 , 0 . 2 , ” s e t o s a ”
4 . 7 , 3 . 2 , 1 . 3 , 0 . 2 , ” s e t o s a ”
. . .
7 . 0 , 3 . 2 , 4 . 7 , 1 . 4 , ” v e r s i c o l o r ”
6 . 4 , 3 . 2 , 4 . 5 , 1 . 5 , ” v e r s i c o l o r ”
6 . 9 , 3 . 1 , 4 . 9 , 1 . 5 , ” v e r s i c o l o r ”
. . .
6 . 3 , 3 . 3 , 6 . 0 , 2 . 5 , ” v i r g i n i c a ”
5 . 8 , 2 . 7 , 5 . 1 , 1 . 9 , ” v i r g i n i c a ”
7 . 1 , 3 . 0 , 5 . 9 , 2 . 1 , ” v i r g i n i c a ”

http://www.heatonresearch.com/wiki/Iris_Data_Set

1.2 Modeling Problems 9

The above data are shown as a CSV file. CSV is a very common input
format for machine learning. The first row is typically a definition for each of
the columns in the file. As you can see, for each of the flowers there are five
pieces of information provided:

• Sepal length

• Sepal width

• Petal length

• Petal width

• Species

For classification, the algorithm is instructed to determine the species of the
flower given the sepal length/width and the petal length/width. The species
is the class.

A class is usually a non-numeric data attribute and, as such, membership
in the class must be well defined. For the Iris dataset, there are three different
types of iris. If a machine-learning algorithm is trained on three types of iris,
it cannot be expected to identify a rose. All members of the class must be
known at the time of training.

1.2.2 Regression Analysis

In the last section, we learned how to use data to classify data. But often the
desired output is not simply a class, but a number. Consider the calculation
of an automobile’s fuel efficiency in miles per gallon (MPG). Provided data
such as the engine size and car weight, the MPG for the specified car may be
calculated.

10 Introduction to AI

The following sample provides MPG data for five cars:
”mpg” , ” c y l i n d e r s ” , ” d i sp lacement ” , ” horsepower ” , ” weight ” , ”

a c c e l e r a t i o n ” , ”model year ” , ” o r i g i n ” , ” car name”
1 8 . 0 , 8 , 3 0 7 . 0 , 1 3 0 . 0 , 3 5 0 4 . , 1 2 . 0 , 7 0 , 1 , ” c h e v r o l e t c h e v e l l e malibu ”
1 5 . 0 , 8 , 3 5 0 . 0 , 1 6 5 . 0 , 3 6 9 3 . , 1 1 . 5 , 7 0 , 1 , ” buick sky la rk 320”
1 8 . 0 , 8 , 3 1 8 . 0 , 1 5 0 . 0 , 3 4 3 6 . , 1 1 . 0 , 7 0 , 1 , ”plymouth s a t e l l i t e ”
1 6 . 0 , 8 , 3 0 4 . 0 , 1 5 0 . 0 , 3 4 3 3 . , 1 2 . 0 , 7 0 , 1 , ”amc r e b e l s s t ”
1 7 . 0 , 8 , 3 0 2 . 0 , 1 4 0 . 0 , 3 4 4 9 . , 1 0 . 5 , 7 0 , 1 , ” f o rd t o r i n o ”
. . .

The entirety of this dataset may be found at the link below: (Quinlan, 1993)
http://www.heatonresearch.com/wiki/MPG_Data_Set
A regression analysis aims to train the algorithm with input data about

the car to provide an answer calculated from input. In this case, the algorithm
would be asked to determine the miles per gallon that the specified car would
likely get.

It is also important to note that not every piece of data in the above file
will be used. The columns “car name” and “origin” are not used. The name
of a car has nothing to do with its fuel efficiency and is therefore excluded
from the calculation. Likewise, the origin of the car does not contribute to
this equation. Although the origin is given a numeric value that specifies what
geographic region the car was produced in and some regions do focus more on
fuel efficiency than others, this piece of data is far too broad to be useful.

1.2.3 Clustering

Clustering is very similar to classification in that the computer is required to
group data. Clustering algorithms take input data and place it into clusters.
The programmer usually specifies the number of clusters to be created before
training the algorithm. The computer places similar items together using the
input data. Because you do not specify what cluster you expect a given item
to fall into, clustering is useful when you have no expected output. Because
there is no expected output, clustering is considered unsupervised training.

Consider the car data from the previous section. You might run a clustering
algorithm to break the cars into four groups. This would tell you what cars
are similar to each other.

http://www.heatonresearch.com/wiki/MPG_Data_Set

1.2 Modeling Problems 11

The difference between clustering and classification is that clustering gives
the algorithm the freedom to find order in the data. Classification teaches the
algorithm what class known data should fit into, with the goal of allowing the
trained algorithm to eventually classify new data that the algorithm was not
trained with.

Clustering and classification algorithms handle new data differently. The
entire purpose of classification is to be able to classify new data based on
previous data with which the algorithm was trained, while clustering makes
no provision for new data. If you want to add new data to the existing groups,
you must reclassify the entire data set.

1.2.4 Time Series

Machine learning algorithms work somewhat like mathematical functions. They
map the input values to output values. If there is no internal state to the
machine-learning algorithm, a given set of inputs will always produce the same
outputs. Many machine-learning methods do not have an internal state that
changes and affects the output. For example, in the context of the car data,
you would want the classification algorithm’s decision to be supported by all
the data, rather than just by the last few cars that it has seen.

Time series is often very important. Some machine-learning algorithms
support it and others do not. If you are classifying cars or irises you most
likely do not care about time series. However, if your only input is the current
price of a stock, time series becomes very important. A single price point for
a stock on a given day does not help much for prediction. However, a trend
considering several days of stock prices may be of use.

There are also methods to encode time series into algorithms that do not
directly support time series. In these cases you make the previous days part of
the input. For example, you may have five inputs that represent the previous
five days of trading from the day you wish to predict.

12 Introduction to AI

1.3 Modeling Input and Output

Earlier in this chapter I mentioned that a machine-learning algorithm is pro-
vided with input and produces output. This output is affected by the al-
gorithm’s long- and short-term memory. Figure 1.3 shows how long- and
short-term memory are involved in the output process.

Figure 1.3: Abstract Machine Learning Algorithm

As you can see, the algorithm above accepts input and produces output.
Most machine learning algorithms operate completely synchronously. The al-
gorithm will only output when presented with input. It is not like a human
brain, which always responds to input but occasionally produces output with-
out input!

So far we have only referred to the input and output patterns abstractly.
You may be wondering exactly what they are. The input and output patterns
are both vectors. A vector is essentially an array of floating point numbers, as
shown below:
Input : [−0.245 , . 283 , 0 . 0]
Output : [0 . 782 , 0 .543]

Nearly all machine learning algorithms have a fixed number of inputs and
outputs. They work like functions in computer programs. The input can be

1.3 Modeling Input and Output 13

thought of as the parameters to a function. The output is the return value. For
the above data an algorithm would accept three input values and return two
output values. These counts do not typically change. As a result, the number
of elements in the input and output patterns for a particular algorithm can
never change.

To make use of the algorithm, you must express your problem in such a
way as to have the input to the problem be an array of floating point numbers.
Likewise, the solution to the problem must be an array of floating point num-
bers. This is really all that most algorithms can do for you. Machine learning
algorithms take one array and transform it into a second.

Many pattern recognition algorithms are something like a hash table in
traditional programming. In traditional programming, a hash table is used to
map keys to values. In many ways, a hash table is somewhat like a dictionary,
in that it includes a term and its meaning. A hash table could look like the
following:

• “hear” -> “to perceive or apprehend by the ear”

• “run” -> “to go faster than a walk”

• “write” -> “to form (as characters or symbols) on a surface with an
instrument (as a pen)”

The above example is a mapping between words and their definitions. This
hash table uses a key of string and applies it to another value of a string.
If you provide the dictionary with a key (the word), it returns a value (the
definition). This is how most machine learning algorithms function.

All program hash tables use keys and values. Think of the pattern sent to
the input layer of the algorithm as the key to the hash table. Likewise, think
of the value returned from the hash table as the pattern that is returned from
the output layer of the algorithm. Of course, an algorithm is much more than
a simple hash table.

With the above hash table, what would happen if you were to pass in a
word that is not a key in the map? For example, the key “wrote.” A hash table
would return null or in some way indicate that it could not find the specified
key. Machine learning algorithms, on the other hand, do not return null. They

14 Introduction to AI

find the closest match, or a probability of a match. If you passed “wrote” to
the algorithm above, you would likely get back what you would have expected
for “write.”

Not only does the algorithm find the closest match, it will modify the
output to guess the missing value. Of course, there is not enough data for the
algorithm to have modified the response in the example above, as there are
only three samples. When the data is limited the closest match may not be
very meaningful.

The above mapping brings up one very important point about these algo-
rithms. Given that algorithms accept an array of floating point numbers and
return another array, how would you put strings into the algorithm? There is
a way to do this, although it is much easier to deal with numeric data than
strings.

The Bag of Words algorithm is a common means of encoding strings. (Har-
ris, 1954) Each input represents the count of one particular word. The entire
input vector would contain one value for each unique word. Consider the
following strings.
Of Mice and Men
Three Blind Mice
Blind Man ’ s B l u f f
Mice and More Mice

We have the following unique words. This is our “dictionary.”
Input 0 : and
Input 1 : b l ind
Input 2 : b l u f f
Input 3 : man ’ s
Input 4 : men
Input 5 : mice
Input 6 : more
Input 7 : o f
Input 8 : three

1.3 Modeling Input and Output 15

The four lines above would be encoded as follows.
Of Mice and Men [0 4 5 7]
Three Blind Mice [1 5 8]
Bl ind Man ’ s B l u f f [1 2 3]
Mice and More Mice [0 5 6]

Of course we have to fill in the missing words with zero, so we end up with
the following.
Of Mice and Men [1 , 0 , 0 , 0 , 1 , 1 , 0 , 1 , 0]
Three Blind Mice [0 , 1 , 0 , 0 , 0 , 1 , 0 , 0 , 1]
Bl ind Man ’ s B l u f f [0 , 1 , 1 , 1 , 0 , 0 , 0 , 0 , 0]
Mice and More Mice [1 , 0 , 0 , 0 , 0 , 2 , 1 , 0 , 0]

Notice that we now have a consistent vector length of nine. Nine is the total
number of words in our “dictionary”. Each component number in the vector is
an index into our dictionary of available words. At each vector component is
stored a count of the number of words for that dictionary entry. Each string
will usually contain only a small subset of the dictionary. As a result, most of
the vector values will be zero.

As you can see, one of the most difficult aspects of machine learning pro-
gramming is translating your problem into a fixed-length array of floating point
numbers. The following section shows how to translate several examples.

1.3.1 A Simple Example

If you have read anything about machine learning, you have no doubt seen
examples with the XOR operator. A program learning the XOR operator is
essentially the “Hello World” of AI. This book will describe scenarios much
more complex than XOR, but the XOR operator is a great introduction. We
shall begin by looking at the XOR operator as though it were a hash table. If
you are not familiar with the XOR operator, it works similarly to the AND
and OR operators in that it considers two sides and generates a true or false
answer. An AND operator is true when both sides are true. Likewise an
OR is true when either side is true.

For an XOR to be true, both of the sides must be different from each
other. The truth table for an XOR is as follows.

16 Introduction to AI

False XOR False = False
True XOR False = True
Fal se XOR True = True
True XOR True = False

The above truth table would be represented in hash table form as follows:
[0 . 0 , 0 . 0] −> [0 . 0]
[1 . 0 , 0 . 0] −> [1 . 0]
[0 . 0 , 1 . 0] −> [1 . 0]
[1 . 0 , 1 . 0] −> [0 . 0]

These mappings show the input and the ideal expected output for the algo-
rithm.

1.3.2 Miles per Gallon

Machine learning problems usually involve dealing with a set of data and using
a calculation to predict the output data or to determine a course of action.
Consider a car database that contains the following fields:

• Car weight

• Engine displacement

• Cylinder count

• Horse power

• Hybrid or gasoline

• Miles per gallon

Assuming you have collected some data for these fields, you should be able
to construct a model that can predict one field value based on the other field
values. For this example, we will try to predict miles per gallon.

We will need to define this problem in terms of an input array of floating
point values mapped to an output array of floating point values. Furthermore,

1.3 Modeling Input and Output 17

the numeric range on each of these array elements should be between 0 and
1 or -1 and 1. This is called normalization. Normalization will be covered in
much greater detail in the next chapter.

First, we see how we would normalize data from above. Consider the input
and output data formats. We have six total fields. We want to use five of these
to predict the sixth. The algorithm would have five inputs and one output.

Your algorithm’s input and output would look something like the following.

• Input 1: Car weight

• Input 2: Engine displacement

• Input 3: Cylinder count

• Input 4: Horse power

• Input 5: Hybrid or gasoline

• Output 1: Miles per gallon

We also need to normalize the data. To do this we must think of reasonable
ranges for each of these values. We will then transform input data into a
number between 0 and 1 that represents an actual value’s position within that
range. The following example establishes reasonable ranges for these values:

• Car weight: 100-5000 lbs

• Engine displacement: 0.1-10 liters

• Cylinder count: 2-12

• Horse power: 1-1000

• Hybrid or gasoline: true or false

• Miles per gallon: 1-500

18 Introduction to AI

These ranges may be a little large for modern cars. However, this will allow
minimal restructuring to the algorithm in the future. It is also best to use
ranges that will not invite too much data at their extreme ends, so a large
range is best.

We will now look at an example. How would we normalize a weight of
2,000 pounds? This weight is 1,900 into the range and the size of the range is
4,900 pounds. The percent of the range size is 0.38 (1,900 / 4,900). Therefore,
we would feed the value of 0.38 to the algorithm input to represent this value.
This satisfies the typical range requirement of 0 to 1 for an input.

The hybrid or regular value is a true/false. To represent this value we will
use 1 for hybrid and 0 for regular. We simply normalize a true/false into two
values.

1.3.3 Presenting Images to Algorithms

Images are a popular source of input for algorithms. In this section, we will
see how to normalize an image. There are more advanced methods than this,
but this method is often effective.

Consider a full-color image of 300x300 pixels. 90,000 pixels times the three
RGB colors gives 270,000 total pixels. If we had an input for each pixel, that
would be 270,000 inputs. This is just too large for many algorithms.

Thus, we need to downsample. Consider the following image, which is at
full resolution (Figure 1.4).

1.3 Modeling Input and Output 19

Figure 1.4: An Image at Full Resolution

We will now downsample it to 32x32, as shown below (Figure 1.5).

Figure 1.5: An Image Downsampled

The grid-like pattern of the image after it has been reduced to 32x32 pixels
allows us to use the pixels to form the input to an algorithm. This algorithm
would require 1,024 inputs, if the algorithm were to only look at the intensity
of each square. Looking at the intensity causes the algorithm to “see” in black
and white.

20 Introduction to AI

If you would like the algorithm to see in color, then it is necessary to
provide the intensity of red, green, and blue (RGB) values for each of these
pixels. This would mean three inputs for each pixel, which would push our
input count to 3,072.

The normal intensity range for RGB values is between 0 and 255. To
create input for the algorithm, simply divide the intensity by 255 to create an
intensity percentage. For example, intensity number 10 becomes 10/255, or
0.039.

You may be wondering how the outputs will be handled. In a case such
as this, the outputs should communicate what image the algorithm believes
it is looking at. The usual solution is to create one output for each type of
image the algorithm should recognize. The algorithm will be trained to return
a value of 1.0 for the output that corresponds to what the image is believed
to be.

We will continue showing you how to format algorithms for real-world
problems in the next section, which will take a look at financial algorithms.

1.3.4 Financial Algorithms

Financial forecasting is a very popular form of temporal algorithm. A temporal
algorithm is one that accepts input for values that range over time. If the
algorithm supports short term memory (internal state) then ranges over time
are supported automatically. If your algorithm does not have an internal
state then you should use an input window and a prediction window. Most
algorithms do not have an internal state. To see how to use these windows,
consider if you would like the algorithm to predict the stock market. You
begin with the closing price for a stock over several days.

1.3 Modeling Input and Output 21

Day 1 : $45
Day 2 : $47
Day 3 : $48
Day 4 : $40
Day 5 : $41
Day 6 : $43
Day 7 : $45
Day 8 : $57
Day 9 : $50
Day 10 : $41

The first step is to normalize the data. This is necessary whether your algo-
rithm has internal state or not. To normalize, we want to change each number
into the percent movement from the previous day. For example, day 2 would
become 0.04, because there is a 4% difference between $45 and $47. Once you
perform this calculation for every day, the data set will look like the following:

Day 2 : 0 .04
Day 3 : 0 .02
Day 4:−0.16
Day 5 : 0 .02
Day 6 : 0 .04
Day 7 : 0 .04
Day 8 : 0 .04
Day 9:−0.12
Day 10:−0.18

In order to create an algorithm that will predict the next day’s values, we
need to think about how to encode this data to be presented to the algorithm.
The encoding depends on whether the algorithm has an internal state. The
internal state allows the algorithm to use the last few values inputted to help
establish trends.

Many machine learning algorithms have no internal state. If this is the case,
then you will typically use a sliding window algorithm to encode the data. To
do this, we use the last three prices to predict the next one. The inputs would
be the last three-day prices, and the output would be the fourth day. The
above data could be organized in the following way to provide training data.
These cases specified the ideal output for the given inputs.

22 Introduction to AI

[0 . 0 4 , 0 . 0 2 , −0 . 1 6] −> 0 .02
[0 . 0 2 , −0 . 1 6 , 0 . 0 2] −> 0 .04
[−0 . 1 6 , 0 . 0 2 , 0 . 0 4] −> 0 .04
[0 . 0 2 , 0 . 0 4 , 0 . 0 4] −> 0 .26
[0 . 0 4 , 0 . 0 4 , 0 . 2 6] −> −0.12
[0 . 0 4 , 0 . 2 6 , −0 . 1 2] −> −0.18

The above encoding would require that the algorithm have three inputs and
one output.

1.4 Understanding Training

What exactly is training? Training is the process whereby an algorithm is
adapted for the training data. This can be different from the “internal state”
that I have mentioned. You can think of training as affecting the long-term
memory of an algorithm. For a neural network, training is the weight matrix.

When training occurs depends on the algorithm. Usually, training and
actual usage of the algorithm are divided into two distinct phases. Sometimes,
training and usage can occur simultaneously.

1.4.1 Evaluating Success

In school, students are graded as they learn their subjects. There are many
purposes for these grades. The most basic purpose is to provide the student
with feedback on their path of learning. You must also evaluate your algo-
rithms as they train. This evaluation will both guide the training and provide
you feedback as to the success of the training.

One method of evaluation is to provide a scoring function. This scoring
function takes a trained algorithm and evaluates it. The scoring function
simply returns a score. The goal will be to either minimize or maximize this
score. Whether any given problem is a minimization or maximization problem
is purely arbitrary and is the preference of the scoring programming.

1.4 Understanding Training 23

1.4.2 Batch and Online Training

Batch and online training usually come into play when you are dealing with a
training set, as they refer to types of learning processes. For online training,
learning occurs after each training set element. Batch training accumulates
learning from a certain number of elements and then the algorithm is updated
accordingly. The designated number of elements is called the batch size. Often,
the batch size is equal to the total training size.

Online training can be useful when an algorithm must learn and train at
the same time. The human brain always works in this mode. However, online
training is less common in AI, and not all algorithms support online training.
Online training support is very common for neural networks, however.

1.4.3 Supervised and Unsupervised Training

This chapter outlines two different training methods: supervised and unsuper-
vised. Supervised training occurs when you know the output that you desire
from the algorithm. Unsupervised training occurs when you do not provide
the expected outputs to the algorithm.

There are also hybrid-training methods. In a hybrid training method, you
provide only some expected outputs. This training method is used with deep
belief neural networks.

1.4.4 Stochastic and Deterministic Training

A deterministic training algorithm always performs exactly the same way,
given the same initial state. There are typically no random numbers used in
a deterministic training algorithm.

Stochastic training makes use of random numbers. Because of this, an
algorithm will always train differently, even with the same starting state. This
can make it difficult to evaluate the effectiveness of a stochastic algorithm.
However, stochastic algorithms are very common and very effective.

24 Introduction to AI

1.5 Chapter Summary

This chapter provided a basic introduction to AI, particularly machine learn-
ing. You saw how problems are modeled to a machine-learning algorithm.
Machine learning algorithms share some similarities to biological processes,
but the goal of AI is not to exactly emulate the workings of a human brain.
The goal of machine learning is to produce machines capable of some degree
of intelligence beyond simple procedural programming.

Machine learning is similar to the human brain in that there is input, out-
put, and potentially an internal state. The input and internal state determine
what the output will be. This internal state can be thought of as a short-term
memory that influences the output. There is also a long term memory that
dictates exactly what the machine learning algorithm will output given the
input and internal state. Training is the process of adjusting this long-term
memory so that the machine learning algorithm produces the desired output.

Machine learning algorithms are typically broken into several groups: re-
gression and classification algorithms. Regression algorithms will output a
number given one or more inputs. Regression algorithms are essentially mul-
tivariate functions. These algorithms accept several inputs and produce an
output of one or more values.

Classification algorithms accept one or more variable to return a single
class instance. They are allowed to make decisions based on the input. For
example, a classification algorithm might be used to sort job applicants into
preferred, average, and denied groups.

This chapter showed that the input to a machine learning algorithm is a
vector of numbers. It is important to understand how to represent problems
as a vector of numbers in order to pose your question to the algorithm.

The next chapter will introduce normalization. Normalization broadly
refers to the means by which data are prepared to become input for a ma-
chine learning algorithm. Additionally, normalization is used to interpret the
output from the machine learning algorithm.

1.5 Chapter Summary 25

27

Chapter 2

Normalization

• What is Normalization?

• Reciprocal Normalization and Denormalization

• Range Normalization and Denormalization

In the last chapter, we saw that a machine-learning algorithm is given a vector
of floating point numbers. This is the input vector. We also saw that the
machine-learning algorithm would return a vector in response to the input.
This is the output vector.

This chapter looks at how to present data as an input vector, as well as
how to interpret the results from the output vector. In order to do so, we
must learn about the several different types of data, which are all normalized
in different ways.

2.1 Levels of Measurement

In statistics, data is typically broken down into two major categories: qualita-
tive and quantitative. In general, quantitative data deals with quantities, or
numbers. Qualitative data deals with qualities, or descriptions.

28 Normalization

For example, consider a cup of coffee. You could describe the coffee both
qualitatively and quantitatively. If you were to describe the cup of coffee
qualitatively, you might list the following attributes:

• Brown

• Strong aroma

• White cup

• Hot to the touch

These are all non-numerical qualities, and thus are qualitative. You can also
describe the cup of coffee quantitatively.

• 12 fluid ounces

• 106 calories

• 65 degrees Celsius

• $4.99 cost

These are all numeric quantities that describe the cup of coffee.
We can describe the types of data in even greater detail by categorizing

them into one of four subcategories. These data types were defined by psy-
chologist Stanley Smith Stevens in the article “On the Theory of Scales of
Measurement.” (Stevens, 1946) These four data types are as follows:

• Nominal data

• Ordinal data

• Interval data

• Ratio data

2.1 Levels of Measurement 29

Nominal and ordinal observations are both qualitative, while interval and ratio
observations are both quantitative. The differences between each of the four
can be somewhat confusing. I prefer to think of them in terms of what basic
mathematical operations can be used with each. This is summarized in Figure
2.1.

Figure 2.1: Levels of Measurement

You can usually determine the type of observation by considering what
operators are valid on it. For example, if you have two colors, you can de-
termine whether the two colors are equal (that is, whether both are the same
color). One color is not greater than another color, however. You can’t add
two colors, nor can you multiply two colors. Given these properties, colors are
nominal.

Now let’s consider ordinals. The observation that something is hot or
warm indicates an implied ordering; the “hotness” of a cup of coffee is ordinal.
Given two cups of coffee, one can determine whether they are the same degree
of hotness and whether one is hotter than the other. Ordinals are not only
ordered, but the levels of order are clearly defined. In the case of the levels of
“hotness,” levels include scalding, hot, warm, room temperature, and cold.

For a slightly more complex example of nominal and ordinal observations,
consider a zip code such as those used in the United States to allow for the
quick sorting of letters and packages. They are made up of six digits, and
each specifies a particular region. For example, the 90210 zip code specifies
an address in Beverly Hills, California.

30 Normalization

Although zip codes are always made up of digits and look like numbers,
they are not numbers. You could compare two zip codes to see if they are
equal, but to add to or subtract from a zip code would give a meaningless
answer. So a zip code is clearly qualitative, rather than quantitative. But is
it nominal or ordinal? Although one could compare the numerical value of zip
codes to say that one zip code is greater than another, the higher value of a
zip code gives it no special meaning. Certainly, higher zip codes are often in
the west of the USA and lower zip codes often specify a location in the east,
but this tendency does not hold true in all cases. Zip codes, therefore, are
nominal.

2.1.1 Quantitative Observations

Now we will look at quantitative observations. The relationship between inter-
val and ratio can be a little more complex than between ordinal and nominal.
In addition to the operators above, I will give you one additional rule to de-
fine the difference. Interval observations have an arbitrary zero, whereas ratio
observations have an actual non-arbitrary zero that defines their beginning.

For example, age is a ratio. It has a clearly defined origin at zero, for there
are no ages before age 0. The current year, on the other hand, is an interval.
It does not have a clearly defined origin at 0.

Let’s apply the operator test to these two examples. You can say that
someone is twice the age of someone else, so the multiplier rule is a yes, which
defines age as a ratio. You could treat the current year as a number and
multiply it by 2, but that would not mean that one date was twice the other,
because dates do not have an origin at 0. However, you may add and subtract
quantities from dates to get meaning, so the current date does count as an
interval.

Temperature can be either a ratio or an interval, depending on the scale
used. If you measure the temperature in Kelvin, then zero is absolute zero;
thus, temperature measured in Kelvin is a ratio. Temperature measured in
Fahrenheit or Celsius is an interval, on the other hand, because zero is not the
origin for either Fahrenheit or Celsius.

2.2 Normalizing Observations 31

Test this definition using the phrase “twice as hot.” Ten degrees Celsius
cannot be twice as hot as five degrees Celsius, for there are an infinite number
of degrees available below 0. Thus, because the term “twice” has no meaning
with Celsius or Fahrenheit, they are intervals rather than ratios.

With Kelvin, zero is absolute zero–there is no molecular movement at all,
and it cannot possibly be colder than 0. In the case of Kelvin, 0 is the true
origin point. Twice as hot as 5 is in fact 10 degrees, in Kelvin.

Similarly, speeds are ratios: twice as fast as five kilometers per hour is ten
kilometers per hour. There is no going slower than zero kilometers per hour,
and so zero is the true origin point.

Most scientific measurements are ratio observations. These include length,
width, electrical charge, volume, mass, and Kelvin temperature. The value of
interval measurements are still helpful trackers, but typically their meaning is
more arbitrary.

2.2 Normalizing Observations

In the previous chapter we saw that all input and output from machine learning
algorithms are typically vectors of floating point numbers. The real world
observations that we provide to a machine learning algorithm must be nominal,
ordinal, interval, or ratio. Nominal and ordinal observations are not inherently
numeric, so we need to convert these into a number that is meaningful to the
machine learning algorithm.

Some machine learning algorithms require that all observations be in a
specific range, usually -1 to +1 or 0 to +1. Even if you are not required to be
in a specific range, it is often a good idea to ensure that your values fall into
a range. This will normalize the values so they can be compared.

Why is normalization necessary? Consider if you made two observations,
one of which was the daily volume of the NYSE and the other of which was
the point movement of an individual stock. The NYSE daily volume is usually
in the billions, while the number of points moved by many individual stocks is
typically less than 10. The volume number could easily overwhelm the point
movement, making the point movement seem meaningless, or zero.

32 Normalization

Normalization is something we see every day. One of its most common
forms is that of percentages. If something is 5% off, you can easily tell the
relative size of the discount. It might be a few dollars for a new cell phone
or it might be several hundred dollars for a car, yet the size of the percentage
figure stays the same. We could normalize the values in the NYSE example by
considering them as percentages. Now we might say that the volume increased
by 10%, while the stock fell by 5%. The volume number is now comparable to
the point number.

In the next sections we will see how to normalize nominal, ordinal, interval,
and ratio observations.

2.2.1 Normalizing Nominal Observations

There are two commonly used methods for normalizing ordinal values. In this
section, we will look at one-of-n encoding. This the most simple means of
normalizing nominal values. Later in this chapter, we will discuss equilateral
encoding. Equilateral encoding is more complex, but is often more efficient
than one-of-n encoding.

One-of-n is a very simple form of normalization. For an example, consider
the iris dataset that we saw in the last chapter. A single line from the iris data
set is shown here. The species is non-numeric. We will have to use one-of-n
normalization for it.
5 . 1 , 3 . 5 , 1 . 4 , 0 . 2 , I r i s −s e t o s a

The first four values are all ratio observations, as they are lengths and the
origin is at zero. However, the fifth value is nominal, which is sometimes
called categorical. It describes a category. The nominal value is defined by
the species of the iris; in the iris dataset described above, there were three iris
species:

• Setosa

• Versicolor

• Virginica

2.2 Normalizing Observations 33

With the one-of-n normalization, the machine learning algorithm would have
three outputs–one for each iris species. The machine learning algorithm would
most likely be trained to accept the four length measurements as inputs and
then output three values to predict what species of iris the input data corre-
sponds to.

Normalization is used to create training data. A machine learning algo-
rithm is trained with training data. The actual process of training will be
covered later in this book. For now, you simply need to be aware that a train-
ing set is a collection of input vectors that includes the ideal output for each
vector. We can use the iris data set to generate a training set. First, to gen-
erate the inputs, we will normalize each of the four ratio observations. Later
in the chapter we will see how to normalize ratio observations. For now, we
will focus on the species.

Generating the ideal output for each of these input vectors is relatively
easy. Simply assign a +1 to the neuron that corresponds to the chosen iris
and a -1 to the remaining neurons. For example, using a normalization range
of -1 to 1, the Setosa iris species would be encoded as follows:
1,−1,−1

Likewise, the Versicolor would be encoded as follows:
−1,1,−1

Finally, Virginica would be encoded as follows.
−1,−1,1

If you are using 0 to 1, then substitute 0 for the -1 values in the above three
species encodings.

2.2.2 Normalizing Ordinal Observations

Ordinal observations are not necessarily numeric. However, they do have an
implied ordering. For example, consider the levels of education progressed
through by a student in the United States. One moves from preschool level to
senior level before graduating. The levels have no true numerical value, but
they do occur in a set order.

34 Normalization

In order to normalize an ordinal set, one must preserve the order. One-of-n
encoding loses the order. While the outputs are a vector, and it may appear
that there is order, there is really no ordering, because most machine learning
algorithms treat the individual outputs with no ordering at all. Just because
output #1 and output #2 are next to each other, that does not mean they
are in any way related. Implying such ordering might introduce bias.

To normalize ordinal observations, there two options. First, you can simply
normalize with one-of-n encoding and forget the order. It could be that the
order is not important, and in that case you can simply treat the observation
as an unordered nominal data set. However, if you wish to preserve the order,
you need to assign a whole number to each category, starting with zero. The
number assignments for the grades would thus be as follows:

• Preschool (0)

• Kindergarten (1)

• First grade (2)

• Second grade (3)

• Third grade (4)

• Fourth grade (5)

• Fifth grade (6)

• Sixth grade (7)

• Seventh grade (8)

• Eighth grade (9)

• Freshman (10)

• Sophomore (11)

• Junior (12)

• Senior (13)

2.2 Normalizing Observations 35

Now, we calculate a percent completion rate to determine the value for each
level. There are fourteen total categories. So someone in sixth grade has
completed 50% of their education.
7 / 14 = 0 .5 (50%)

If we are normalizing between the range 0 to 1, then the percentage is sufficient
at 0.5. However, if we are normalizing to the range -1 to 1, we need to apply
the percent to that range. In order to do so, calculate the width of the range,
which is the high value of the range subtracted by the low value.
width = (high − low) = (1 − (−1)) = 2

The percentage can be applied to the value of the width. If we are 50%, then
we are halfway. Simply multiply the percent by the width.
widthDistance = width ∗ 0 .5 = 1

Now, add the width to the lower bound to get the normalized number. If we
had achieved zero percent, we would be exactly at the lower bound (-1). If we
had achieved one hundred percent, we would be exactly at the upper bound
(+1). Sixth grade thus normalizes to 0.
lowerBound + widthDistance = −1 + 1 = 0

The above process can be summarized using Equation 2.1:

f(x) = (nH−nL)x
N

+ nL (2.1)
The concept of calculating the width between the high and low values and
taking the percent of that width to normalize the percentage is one that will
be used again and again. The next two normalization techniques will build on
that concept. For example, the next section shows how to reverse this process
and denormalize a normalized ordinal observation.

2.2.3 Denormalizing Ordinal Observations

Denormalization is the opposite of normalization–it allows you to take a num-
ber that was normalized and convert it back to the original number. This is

36 Normalization

very useful when processing the output from a machine learning algorithm.
For example, if you trained an algorithm to predict the grade level achieve-
ment of any given person, based on other observations, you would probably
train the algorithm with current grade level observations that were normal-
ized. Because the algorithm was trained with normalized data, it will also
output normalized data. You need to denormalize this output so that it will
have meaning in the context of the knowledge that you hoped to achieve.

I will now show you how to denormalize the grade level from the previous
section, which is essentially the process of running the normalization steps in
reverse. Let’s say that the output is the normalized value of zero. To determine
what grade that represents, we first need to calculate how far it is from the
lower bound:
widthDistance = 0 − (−1) = 1

This converts our distance into the width. We can determine the percentage
by calculating what percent into the width the above distance describes. We
know the total width, because it is the range between the normalized upper
and lower bounds (-1 and 1). In order to denormalize, you must know the
range in which the data were originally normalized.
widthPercent = widthDistance / width = 1 / 2 = 0 .5 (50%)

We now apply this 50% to our total number of categories, which, in this case,
is 14.
categoryNumber = t o t a l C a t e g o r i e s ∗ widthPercent = 14 ∗ 0 .5 = 7

The list giving value to the grades indicates that 7 corresponds to the sixth
grade. We have thus denormalized the observation.

The above process can be summarized using Equation 2.2.

f(x) = N ·(x−nL)
nH−nL

(2.2)
In the next section, we will see how to normalize quantitative observations.

2.2 Normalizing Observations 37

2.2.4 Normalizing Quantitative Observations

Interval and ratio observations are normalized in the same way. We simply
look at the range from which either of the quantitative observation types are
drawn and normalize them to the desired range. The individual qualities that
make an interval observation different from a ratio observation are meaningless
for normalization.

Quantitative observations are always numeric, so they might not need to be
normalized. While many machine-learning algorithms do require that numeric
data be normalized to a specific range, some do not. It is important to know
the numeric ranges required by the algorithm you are using in order to receive
relevant output.

For practice, let’s normalize the weight of an automobile. For the purposes
of this example, I will estimate that the range for the weight of a car is between
100 and 4,000 kilograms. As mentioned in Chapter 1, the guessed low should
be lower than the real low and the guessed high should be higher than the
actual high. I would like to normalize this range between -1 and 1. The
various highs and lows that apply to this scenario are listed as follows:

• dataHigh: The highest unnormalized observation.

• dataLow: The lowest unnormalized observation.

• normalizedHigh: The high end of the range to which the data will be
normalized.

• normalizedLow: The low end of the range to which the data will be
normalized.

Plugging in the values from above provides the following values:

• dataHigh: 4,000

• dataLow: 100

• normalizedHigh: 1

• normalizedLow: -1

38 Normalization

We can now normalize the data. We need to calculate two ranges, or widths:
dataHigh to dataLow and normalizedHigh to normalizedLow.
dataRange = dataHigh − dataLow = 4000 − 100 = 3900
normalizedRange = normalizedHigh − normalizedLow = 1 − (−1) = 2

Let’s attempt to normalize a car weight of 1,000 kilograms. First, we need to
determine how far into the dataRange this value is.
d = sample − dataLow = 1000 − 100 = 900

We now convert this to a percent.
dPct = d / dataRange = 900 / 3900 = 0 . 2 3 0 7 6 9 . . . (23%)

Rounded, this gives 0.23. We now calculate how far into the normalize-
dRange is 0.23.
dNorm = dRange ∗ dPct = 2 ∗ 0 .23 = 0.46

We now add this to the normalized low, and we are done.
Normalized = normalizedLow + dNorm = −1 + 0.46 = −0.54

The normalized value is -0.54.
The above process can be summarized using Equation 2.3.

f(x) = (x−dL)(nH−nL)
(dH−dL) + nL (2.3)

The next section will show how to reverse this process and denormalize a
quantitative observation.

2.2.5 Denormalizing Quantitative Observations

To denormalize a quantitative observation, the normalization process is re-
versed. Let’s use the normalized -0.54 from before. First, we calculate how far
it is from the lower bound.
−0.54 − (−1) = 0.46

2.3 Other Methods of Normalization 39

We now need to divide this number by the distance between the normalized
min and max.
0 .46 / 2 = 0.23

The result is 0.23, or 23%. Multiply this by dataRange.
0 .23 ∗ 3900 = 897

The value 897 is the distance into the dataRange that we are. To convert
this to an actual weight, just add dataLow.

897 + dataLow = 897 + 100 = 997

The value 997 is approximately equal to our original number of 1,000, so we
have denormalized the weight. It is not exactly equal because I rounded on
some of the divisions.

The above process can be summarized with Equation 2.4.

f(x) = (dL−dH)x−(nH ·dL)+dH ·nL

(nL−nH) (2.4)

There are other ways to normalize both nominal and quantitative observations.
These will be covered in the next section.

2.3 Other Methods of Normalization

There are many other means of normalizing observations. The means already
presented are the most common. This section will introduce some other nor-
malization methods for both quantitative and nominal observations.

2.3.1 Reciprocal Normalization

In this section we will look at a very simple means of normalization–reciprocal
normalization. This normalization method supports both normalization and
denormalization. However, reciprocal normalization is limited in that you can-
not normalize into the range of your choice. Rather, reciprocal normalization
always normalizes to a number in the range between -1 and 1.

40 Normalization

Reciprocal normalization is very easy to implement. It requires no analysis
of the data to determine high and low data values. Equation 2.5 shows how
to use reciprocal normalization.

f(x) = 1
x

(2.5)

To see Equation 2.5 in use, consider normalizing the number five.
f (5 . 0) = 1 . 0 / 5 . 0 = 0 .2

As you can see, the number five has been normalized to 0.2.

2.3.2 Reciprocal Denormalization

It is very easy to denormalize a number that has been normalized reciprocally.
Because it is a reciprocal, it is the same equation.

f(x) = 1
x

(2.6)

To see Equation 2.6 in use, consider denormalizing the number 0.2.
f (0 . 2) = 1 / (0 . 2) = 5 .0

As you can see, we have easily completed a round trip. We normalized 5.0 to
0.2, and then denormalized 0.2 back to 5.0.

2.3.3 Understanding Equilateral Encoding

Equilateral encoding is a potential replacement for one-of-n encoding. I must
admit that I am rather fond of this encoding method. If you’ve read my web-
based articles, you will see that I use it often. Equilateral encoding brings two
main features to the table.

• Requires one fewer output than one-of-n

• Spreads the “blame” better than one-of-n

2.3 Other Methods of Normalization 41

Equilateral encoding uses one fewer output than one-of-n. This means that
if you have ten categories to encode, one-of-n will require ten outputs while
equilateral will require only nine. This gives you a slight performance boost.

The second feature is slightly more difficult to understand. Most training
algorithms will score the output of a machine-learning algorithm based on
the incorrectness of each output. Consider if you had 100 categories, which
would require 100 outputs in one-of-n. The incorrectness will be centered
primarily on two outputs. Recall that one-of-n specifies the selected category
by which output has the highest value. The two outputs primarily involved in
the incorrect answer are the output that mistakenly had the highest output and
the output that should have had the correct output. All of the other outputs
have an “ideal value” of either 0 or -1, depending on your normalization range.

This can cause a small problem for the one-of-n normalization method. If
the algorithm had predicted a versicolor iris when it should have predicted a
verginica iris, the actual output and ideal output would be as follows:
I d e a l output : −1, −1, 1
Actual output : −1, 1 , −1

The problem is that only two of three actual outputs are incorrect. We would
like to spread the “guilt” for this error over a larger percent of the actual out-
puts. This ensures that any training correct is applied equally to all outputs.
To do this, a unique set of values for each class must be determined. Each set
of values should have an equal Euclidean distance from the others. We will
see more about Euclidean distance later in this chapter. The equal distance
makes sure that incorrectly choosing Iris setosa for versicolor has the same
error weight as choosing Iris setosa for Iris virginica.

Listing 2.1 shows the ideal classes normalized for one of n.

Listing 2.1: Calculated Class Equilateral Values 3 Classes
0 : −0.8660 , −0.5000
1 : −0.8660 , −0.5000
2 : 0 .0000 , 1 .0000

42 Normalization

Notice that there are two outputs for each of the three classes. This causes
the decreased number of outputs provided by equilateral encoding relative to
one-of-n encoding. Equilateral encoding always requires one fewer output than
one-of-n encoding would have.

Look at the example concerning equilateral normalization. Just as before,
consider whether the algorithm had predicted a versicolor iris when it should
have predicted a verginica iris. The output and ideal are as follows:
I d e a l output : 0 .0000 , −1.0000
Actual output : −0.8660 , −0.5000

In this case, there are only two outputs, as is consistent with equilateral en-
coding. Now all outputs are producing incorrect values. Additionally, there
are only two outputs to process, which slightly decreases the amount of data
processed by the machine learning algorithm.

Algorithms will rarely give output that exactly matches any of their train-
ing values. To deal with this in one-of-n encoding, we simply look at what
output was the highest. This method does not work for equilateral encoding.
Equilateral encoding shows what calculated class equilateral value (Listing
2.1) has the shortest distance to the actual output of the algorithm.

What is meant by the assertion that each of the sets are equal in distance
from each other? It means that their Euclidean distance is equal. Distances
will be covered in greater detail in the next chapter. The Euclidean distance
can be calculated using Equation 2.7.

d(p,q) =
√√√√ n∑

i=1
(pi − qi)2 (2.7)

In the above equation, the variable “q” represents the ideal output value; the
variable “p” represents the actual output value. There are “n” sets of ideal
and actual outputs. The next chapter will greatly expand upon Euclidean
distance.

2.3 Other Methods of Normalization 43

2.3.4 Implementing Equilateral Encoding

I will now show you the means by which the Euclidean encodings are calcu-
lated. I originally saw this algorithm in the book “Practical Neural Network
Recipes in C++” by Masters (1993), who cited an article in PCAI as the
actual source. (Guiver, 1991)

The equilateral algorithm can be a bit confusing, so I will demonstrate
it in two different ways. First, I will demonstrate it graphically. We will
normalize to the range -1 to 1. Consider if we were to simply encode two
categories. Equilateral encoding requires one output less than the number of
categories. For two categories, only one output is given. We can think of
the single output as a single dimension. Figure 2.2 demonstrates what the
one-dimensional output will look like.

Figure 2.2: Equilateral Encoding for Two Categories

You can see the two points on the above line. We would have a single
output of either 1 or -1.

If we had three categories, there would be two outputs. Think of this as
two dimensions; it creates an equilateral triangle. This is where the name
equilateral encoding comes from. Figure 2.3 shows how the three categories
are encoded.

44 Normalization

Figure 2.3: Equilateral Encoding for Three Categories

The key point of equilateral encoding is that each of these three categories
must be equally distant from their neighbors. This allows the three categories
to be represented in two dimensions. The dimensions that you see in the above
figure match the encodings that we used in Figure 2.2.

We can also encode four categories. To encode four categories, we need
three outputs, or three dimensions. This is depicted in in Figure 2.4.

2.3 Other Methods of Normalization 45

Figure 2.4: Equilateral Encoding for Four Categories

The above figure is a three-dimensional equilateral triangle. It is essentially
a triangle-based pyramid. Just like all equilateral triangles, the lengths of all
sides are equal.

We can also encode much larger numbers of categories. I cannot show these
as dimensions because it is difficult to display a high dimensional figure in our
three dimensional world, let alone on a two-dimensional book page.

Hopefully the graphical representations above show how the categories are
arranged equidistantly from one another. Now I will show you how these
numbers are actually calculated.

The equilateral encoding algorithm is usually implemented to output a
matrix. The matrix is N by N-1, where N is the number of categories. Each
row contains the encodings for one category. We will always create this matrix
for normalization to the range -1 to 1. We will ultimately scale the completed
matrix to whatever range we desire.

46 Normalization

To begin creating this matrix we first seed the matrix for a two class en-
coding. As seen in Figure 2.1, this is simply the values -1 and 1. We begin by
seeding these two values into the matrix.
r e s u l t [0] [0] = −1;
r e s u l t [1] [0] = 1 ;

We will now loop from two categories up to our N classes. We skip 1 because
we already seeded for the case where we have one category only. We loop from
2 up to, but not including, N.
for k from 2 to N {

Next, we calculate a scaling factor. We will recursively build each successive
matrix from the previous matrix. We seed for two categories, and then scale it
to build the matrix for three categories. This is done with the following code:

f = sq r t (N ∗ N − 1 . 0) / r ;

Next, we loop over the portion of the matrix that we have already calculated
and scale.

for i from 0 to k {
for j from 0 to k−1 {

r e s u l t [i] [j] ∗= f ;
}

}

We will now populate the edge of the matrix (columns) with the negative
reciprocal of N.

r = −1 / N;
for i from 0 to k {

r e s u l t [i] [k − 1] = r ;
}

Set the last value in the matrix to 1.0 and continue the previous “for loop.”
r e s u l t [k] [k − 1] = 1 . 0 ;
}

2.4 Chapter Summary 47

Now that the loop is complete, we are ready to scale the matrix to the appro-
priate range. We use the same normalization formula shown in Equation 2.3.

We will use -1 and 1 for the low and high ranges for the data.
dataLow = −1;
dataHigh = 1 ;

We now loop over the entire matrix and scale it.
for row from 0 to N {

for c o l from 0 to N−1 {
r e s u l t [row] [c o l] = ((r e s u l t [row] [c o l] − dataLow)

/ (dataHigh − dataLow))
∗ (normalizedHigh − normalizedLow) + normalizedLow ;

}
}

At this point, the matrix is now ready to be used as a table for equilateral
encoding. If you wish to encode a category to equilateral, simply use the
matrix as a lookup table and copy the row that corresponds to the category
you are encoding. To decode, simply find the matrix row that has the lowest
Euclidean distance to the output vector from your machine-learning algorithm.

2.4 Chapter Summary

This chapter described several normalization processes. Normalization is the
process by which data is forced to conform to a specific range. The range is
usually either -1 to +1 or 0 to 1. The range you choose is usually dependent
on the machine-learning algorithm you are using. This chapter covered several
different types of normalization.

Reciprocal normalization is a very simple normalization technique. This
technique normalizes numbers to the range -1 to 1. Reciprocal normalization
simply takes the reciprocal normalization and divides the number to normalize
by 1.

48 Normalization

Range normalization is more complex. However, range normalization al-
lows you to normalize to any range you like. Additionally, range normalization
must know the range of the input data. While this does allow you to make
use of the entire normalization range, it also means that the entire data set
must be analyzed ahead of time.

This chapter also showed how Euclidean distance can be used to determine
how similar two vectors are to one another. The next chapter will expand upon
the concept of distance and introduce additional distance metrics.

2.4 Chapter Summary 49

51

Chapter 3

Distance Metrics

• Vectors

• Euclidean Distance

• Manhattan Distance

• Chebyshev Distance

Distance is a very important measurement in both real life and Artificial Intel-
ligence (AI). In real life, distance measures the degree of separation between
two points. In AI, distance is used to calculate the similarity of two vectors.
For AI, think of a vector as a one-dimensional array–the distance between two
arrays is the similarity between them.

3.1 Understanding Vectors

A vector is essentially a one-dimension array. Do not confuse the dimension-
ality of the vector array with the dimensions of your problem. Even if your
problem had 10 inputs, you would still have a vector. Vectors are always one
dimension arrays. Your ten inputs would be stored in a vector of length ten.

In AI, a vector is usually used to store observations about a particular
instance of something.

52 Distance Metrics

This maps to the real world concept of distance quite well. You can think
of a point on a sheet of paper as having two dimensions, which are usually
referred to as x and y. Likewise, a point in 3D space has three dimensions,
usually labeled “x,” “y,” and “z.” A two dimensional point can be stored in a
vector of length two. Likewise, a 3D point can be stored in a vector of length
three.

Our universe is made up of three perceivable dimensions, although some-
times “time” is treated as a fourth dimension. However, this is a manifold,
and does not imply that time is a true dimension, at least in the sense of the
first three. Because higher dimensions are imperceptible to humans, it is very
difficult for us to comprehend dimensional spaces higher than three. Very high
dimension spaces are very common in AI, however.

Recall from Chapter 2, “Normalizing Data,” that the iris data set had the
following five observations, or features:

• Sepal length

• Sepal width

• Petal length

• Petal width

• Iris species

You could think of this data set as a vector of length 5. However, the species
feature must be handled differently than the other four. Vectors typically
contain only numbers. The first four features are inherently numerical, but
species is not. As demonstrated in chapter two, there are several ways to
encode the species observation to additional dimensions.

Only simple numeric encoding translates the iris species to a single di-
mension. We must use additional dimensional encodings, such as one-of-n or
equilateral, so that the species encodings are equidistant from each other. If
we are classifying irises, we do not want our means of encoding to induce any
biases.

3.2 Calculating Vector Distance 53

Thinking of the iris features as dimensions in a higher dimensional space
makes a great deal of sense. You can think of the individual samples (the rows
in the iris data set) as points in this search space. Points closer together are
likely to share similarities. Let’s take a look at what this actually looks like
by considering the following three rows from the iris data set:
5 . 1 , 3 . 5 , 1 . 4 , 0 . 2 , I r i s −s e t o s a
7 . 0 , 3 . 2 , 4 . 7 , 1 . 4 , I r i s −v e r s i c o l o r
6 . 3 , 3 . 3 , 6 . 0 , 2 . 5 , I r i s −v i r g i n i c a

If we use one-of-n encoding to the range 0 to 1, the above three rows would
encode to the following three vectors:
[5 . 1 , 3 . 5 , 1 . 4 , 0 . 2 , 1 , 0 , 0]
[7 . 0 , 3 . 2 , 4 . 7 , 1 . 4 , 0 , 1 , 0]
[6 . 3 , 3 . 3 , 6 . 0 , 2 . 5 , 0 , 0 , 1]

Now that you have the data in vector form, you can calculate the distance be-
tween any two data items. The next few sections will describe several different
methods to calculate the distance between two vectors.

3.2 Calculating Vector Distance

The distance between two vectors tells us the degree of similarity between two
vectors. There are several different ways to calculate this vector distance.

3.2.1 Euclidean Distance

The Euclidean distance measurement is based off of the real, two-dimensional
distance between two vectors. That is, it is the difference between the two
points if you drew them on paper and measured with a ruler. This two-
dimensional distance is based on the Pythagorean Theorem. Specifically, if
you had two points (x1,y1) and (x2,y2), the distance between the two would
be described as follows:

d =
√

(x2 − x1)2 + (y2 − y1)2 (3.1)

54 Distance Metrics

Figure 3.1 shows a two dimensional Euclidean distance between two points.

Figure 3.1: Two-Dimensional Euclidean Distance

This would work fine for comparing two vectors of length two. However,
most vectors are longer than two numbers. To calculate the Euclidean distance
for any sized vector, use the general form of the Euclidean distance equation.

The Euclidean distance measurement is used often in Machine Learning. It
is a quick way to compare two vectors of numbers that have the same number
of elements. Consider three vectors, named vector a, vector b, and vector c.
The Euclidean distance between array a and array b is 10. The Euclidean
distance between array a and array c is 20. In this case, the contents of array
a more closely match array b than they do array c.

3.2 Calculating Vector Distance 55

Equation 3.1 shows the formula for calculating the Euclidean distance.
(Deza, 2009)

d(p,q) = d(q,p) =
√√√√ n∑

i=1
(qi − pi)2 (3.2)

The above equation shows us the Euclidean distance d between two arrays p
and q. The above equation also states that d(p,q) is the same as d(q,p).
This simply means that the distance is the same no matter which end you
start at. Calculation of the Euclidean distance is no more than summing the
squares of the difference of each array element. Following this, the square root
of this sum is taken. This square root is the Euclidean distance.

The following shows Equation 3.1 in pseudo code form.
f unc t i on euc l i d ean (pos i t i on1 , p o s i t i o n 2)
{

sum = 0 ;
for i from 0 to p o s i t i o n 1 . l ength
{

d = p o s i t i o n 1 [i] − p o s i t i o n 2 [i] ;
sum = sum + d ∗ d ;

}

return s q r t (sum) ;
}

3.2.2 Manhattan Distance

Manhattan distance is also commonly called taxicab distance. Euclidean dis-
tance can be thought of in terms of “as the crow flies.” Manhattan distance
calculates the distance as though you were driving on a city grid. (Krause,
2012) You can see two-dimensional Manhattan distance depicted in Figure 3.2.

56 Distance Metrics

Figure 3.2: Two-Dimension Manhattan Distance

To calculate the Manhattan Distance between two points, add the absolute
distances of each of the dimensions. Equation 3.2 performs this operation.
(Deza, 2009)

d(p,q) = d(q,p) =
n∑

i=1
|pi − qi| (3.3)

The primary difference between the Euclidean and Manhattan distances is that
large distances are penalized disproportionately more than small distances. For
example, when using Euclidean distance, the distance between two vectors that
differ by one unit in two dimensions (the square root of two) is less than the
distance between two vectors that differ by two units in only one dimension
(two), whereas they would both be equal (two) using Manhattan distance.

3.2 Calculating Vector Distance 57

The following shows Equation 3.2 in pseudo code form.
f unc t i on manhattan (pos i t i on1 , p o s i t i o n 2)
{

sum = 0 ;
for i from 0 to p o s i t i o n 1 . l ength
{

d = abs (p o s i t i o n 1 [i] − p o s i t i o n 2 [i]) ;
sum = sum + d ;

}

return sum ;
}

3.2.3 Chebyshev Distance

The Chebyshev distance is also commonly called the chessboard distance. If
you’ve ever played chess, you can think of it as the number of moves that a
king would take to move between the two points. Figure 3.3 shows how far
each of the locations is from the first point.

58 Distance Metrics

Figure 3.3: Two-Dimension Chebyshev Distance

To calculate the Chebyshev distances, take the maximum of the dimension
differences. This is described in Equation 3.3. (Deza, 2009)

d(p,q) = d(q,p) = max
i

(|pi − qi|) (3.4)

The Chebyshev distance can be useful when you want to focus on the dimen-
sion with the largest distance. When all dimensions are either normalized or in
approximately the same range and the worst dimension governs the similarity
between the two vectors, the Chebyshev distance is best to use.

3.3 Optical Character Recognition 59

The following shows Equation 3.3 in pseudo code form.
f unc t i on chebyshev (pos i t i on1 , p o s i t i o n 2)
{

r e s u l t = 0 ;
for i from 0 to p o s i t i o n 1 . l ength
{

d = abs (p o s i t i o n 1 [i] − p o s i t i o n 2 [i]) ;
r e s u l t = max(r e s u l t , d) ;

}

return r e s u l t ;
}

3.3 Optical Character Recognition

OCR is a very common example of machine learning. You’ve probably seen
it on the Internet. Most of these examples are of the same form. You draw
a series of characters and a very complex machine-learning algorithm (often a
neural network) learns your characters and can recognize new ones.

Euclidean distance can be used to perform basic Optical Character Recog-
nition (OCR). The program allows you to draw individual characters and add
them a list of known characters. The characters you draw are images, which
are a popular source of input for AI. This section describes how to normalize
an image using down sampling. There are more advanced methods than this,
but down sampling is often effective. (Lyons, 2009)

The first step is to take a raw image that you want the program to recog-
nize. A real OCR package would have to process the image and determine its
individual characters. For this example, we will simplify the process by only
using a single character. Figure 3.4 shows such an image–a zero digit.

60 Distance Metrics

Figure 3.4: Drawing a Zero

You may have noticed there is quite a bit of extra space at the sides of the
digit I drew. This could present a problem. The machine learning algorithm
will be looking at a grid of pixels as inputs. What if the user draws the zero
in the upper left corner during training, but in the lower-right corner when
actually using the algorithm? The algorithm would be unlikely to recognize
the second drawing, because the pixels would be on different inputs. Because
of this, it is necessary to crop. To crop, just drop lines from the top, left, right,
and bottom until they touch a pixel. Figure 3.5 shows the cropping lines.

3.3 Optical Character Recognition 61

Figure 3.5: Cropping the Digit

Then crop the image. While doing so, we will also down sample. This will
cause us to have fewer pixels to review and resolves issues related to size. If
the user draws the digit at different sizes, down sampling will eliminate the
possibility that the sizing will affect the program’s reading.

Why do we need to decrease the number of pixels? Consider a full-color
image that is 300x300 pixels. We would have 90,000 pixels times the three
RGB colors, giving 270,000 total pixels. If we had an input for each pixel,
that would be 270,000 inputs. Each image is a vector, and a 270k-dimension
vector would be very large! To make the program more robust, it is necessary
to decrease the number of inputs.

62 Distance Metrics

Figure 3.6 shows what the image looks like down sampled to 7x5 pixels.

Figure 3.6: Down Sampling

To perform the down sample, lay a 7x5 grid over the high-resolution image.
For each grid cell, make the entire cell black, if even one underlying pixel is
black.

Because we have a 7x5 grid, we now can create a vector of size 7x5 or 35
inputs. We create a vector for each digit and store its cropped, down sampled
form in a table. When the user draws new characters to recognize, we will crop
and down sample. A new vector is created for each image. We then find the
digit in our table with the least distance from our new image. We determine
the new image to be the same digit as the digit in the table with the lowest
distance.

3.4 Chapter Summary

Vectors are a very important component of machine learning. Both input and
output are in the form of vectors in the context of a machine learning algo-
rithm. The memory of the machine learning algorithm is typically thought of
as a vector. Vectors can also be considered as coordinates in an n-dimensional
space. This allows us to compare the similarity of two vectors by computing
the distance between them.

3.4 Chapter Summary 63

There are many different ways to calculate the distance between two vec-
tors. One of the most basic is Euclidean distance. Euclidean distance uses
the regular distance formula for between two-dimensional points. This same
formula can be applied to any number of dimensions. Manhattan distance and
Chebyshev distance may also be used.

Optical Character Recognition (OCR) can be implemented through simple
distance calculation. We begin by creating a table of known characters and
a table of vectors to represent these characters. These vectors are created by
cropping and down sampling the character images. New images are cropped
and down sampled, as well. We then determine the new character to be the
character that has the least distance from one of the vectors stored in the
table.

Random numbers are a very important concept to machine learning. We
will often use a random vector as the initial state of a machine learning al-
gorithm. This initial random state is then refined during training. Random
numbers can also be used for Monte Carlo techniques for training. The next
chapter will cover random numbers.

65

Chapter 4

Random Number Generation

• Pseudorandom Number Generation

• Linear Congruential Generator (LCG)

• Multiply With Carry (MWC)

• Mersenne Twister

• Monte Carlo Method

Random numbers are very important to many machine learning algorithms
and training techniques. When performed by computers, random number
generation is called pseudorandom number generation (PRNG). The prefix
“pseudo” means that something is implied, rather than defined. This is the
case with computer generated random numbers, as a computer is a completely
logical machine that follows instructions and can only simulate randomization.
Given exactly the same inputs and internal state, a computer will always
produce exactly the same outputs. (Turing, 1948)

Despite these logical limitations to randomization, computers can be very
effective at pseudorandom number generation. Two criteria are often used
to judge the effectiveness of a PRNG: the randomness of the algorithm and
the security of the PRNG algorithm. An algorithm can be very random,
but is not necessarily cryptographically secure. For AI, we care primarily
about the randomness of an algorithm. Security is more important for an

66 Random Number Generation

encryption algorithm. A secure PRNG is called a Cryptographically Secure
Pseudorandom Number Generator (CSPRNG).

Good randomness is defined by whether a PRNG’s period produces de-
tectable repeating sequences within a period and how long the PRNG’s peri-
ods are. In this context, a period is the amount of random numbers that a
PRNG can produce before it begins to repeat the sequence. Each period is
essentially a string of numbers, and each PRNG compiles a series of identical
periods. The larger the period, the more random a generator is. The fewer
repeating sequences evident inside of a period there are, the more random a
generator is.

It is important to understand the distinction between regular PRNGs and
CSPRNGs. All PRNGs and CSPRNGs have an internal state. If you know
the internal state of the generator, you will know what the next random num-
ber will be. PRNGs and CSPRNGs can both potentially produce high qual-
ity random number sequences. The primary difference between PRNGs and
CSPRNGs is that you can typically determine a PRNG’s internal state by
analyzing the numbers. However, you cannot determine a CSPRNG’s internal
state in a reasonable amount of time. This distinction is critical for cryptol-
ogy, but is not as important for AI. In AI, the quality of the numbers is most
important, while the numbers’ likelihood of providing information about the
algorithm’s internal state is of less importance.

4.1 PRNG Concepts

There are several important concepts that nearly all PRNGs share. These
define how the PRNG performs and what its expected output can be. Common
concepts that all PRNGs share include the following:

• Seed

• Internal State

• Period

The seed defines the sequence of random numbers you will get, as well as the
initial internal state. You should always get the same sequence of random

4.2 Random Distribution Types 67

numbers for the same given seed, and nearly every seed should produce a
different sequence of random numbers.

The internal state comprises the variables that the PRGN uses to produce
both the random numbers and the next internal state. If you know the internal
state and the type of PRGN or CSPRNG algorithm, you can predict the next
random number.

The length of each random number sequence is the period. Once the period
is up, the random PRGN will repeat. That is why the PRGN is considered a
periodic function–because it repeats its values at regular intervals or periods.
Figure 4.1 shows the sine function, which is perhaps the most well-known
periodic function.

Figure 4.1: The Sine Function is Periodic

As you can see from the above figure, the sine function has a period of
2*PI, or approximately 6.18.

4.2 Random Distribution Types

You will usually want your random numbers to be uniformly distributed.
PRNGs typically provide a random number between 0 and 1, with equal prob-
ability of getting any particular number in that range. You can see the results
of generating a large number of random numbers between 0 and 1 in Figure
4.2, which shows a uniform distribution of random numbers.

68 Random Number Generation

Figure 4.2: Uniform Distribution of Random Numbers

As you can see from figure 4.2 above, the random numbers are evenly
distributed between 0 and 1. This is called a uniform distribution, or a uniform
random number. It provides equal probability of getting any option within the
specified range.

Most programming languages provide a means to generate uniformly dis-
tributed random numbers between 0 and 1. You can scale this random number
out to whatever range you desire. This works very similarly to normalization.
If the function rand() returns a random number between 0 and 1, then equa-
tion 4.1 scales it to a range between high and low.

rnd(low, high) = rnd() · (high− low) + low (4.1)
The above equation allows you to generate a random number in any range.

Some programming languages also provide a means to generate a normally
distributed random number. Figure 4.3 shows such normally distributed ran-
dom numbers.

4.2 Random Distribution Types 69

Figure 4.3: Normal Distribution of Random Numbers

The random numbers with the greatest probability are clustered around
0. There is really no defined upper and lower bound. Each whole number
represents a standard deviation. As the standard deviations increase on both
the positive and negative sides, the probability of getting a random number
decreases greatly. Beyond 4 or -4, it is very rare to get a number. Normally
distributed random numbers are often useful when you want to vary a number
by a small random amount.

Not all programming languages support normally distributed random num-
bers, however. The functions that support these PRNGs are listed here.
C#

Uniform : Random . NextDouble
Normal : NA

C/C++
Uniform : rand
Normal : NA

Java
Uniform : Random . NextDouble
Normal : Random . nextGaussian

Python
Uniform : random . random
Normal : random . randn

R
Uniform : r u n i f
Normal : rnorm

70 Random Number Generation

If your language does not support normal distributions, you can use the Box
Muller transformation to transform uniformly distributed random numbers
into normally distributed random numbers. Box Muller is discussed at length
later in this chapter.

4.3 Roulette Wheels

Another popular random number technique is called the roulette wheel (Back,
1996). This technique only bears a slight resemblance to an actual roulette
wheel, as seen in a casino. Roulette wheels are useful when you would like to
choose between three or more categories. For example, consider if you wanted
to create a robot to randomly explore a grid and your robot can perform only
the following three actions:

• Move forward

• Turn left

• Turn right

Although the robot moves randomly, you might not want an even distribution
among these three directions. You might want the robot to move as follows:

• Move forward (80% of the time)

• Turn left (10% of the time)

• Turn right (10% of the time)

Such a random number generation is relatively easy to implement. You must
order these choices so that they each share part of the 0 to 1 range that a
uniform PRNG will generate numbers for.

If x is the random number, then the following list defines our actions.
i f 0<x<0.8 then move forward
i f 0.8<x<0.9 then turn l e f t
i f 0.9<x<1.0 then turn r i g h t

4.4 PRNG Algorithms 71

The first line is needed because x will be below 0.8 in 80% of the cases. The
second line is needed because x will be between 0.8 and 0.9 in 10% of the cases.
Likewise, x will be between 0.9 and 1.0 in 10% of the cases.

4.4 PRNG Algorithms

There are many different PRNG algorithms. Often, there is a tradeoff between
execution speed and randomness. Some algorithms are simply better than
others. In this section, we will review some of the PRNG algorithms. Finally,
we will review the Box Muller transformation. Box Muller is not a PRNG
algorithm, but it can take the output of a uniform PRNG algorithm and
produce normally distributed random numbers.

Performance is another very important consideration for PRNG selection.
Most AI algorithms require a very large quantity of random numbers. Random
number generation can thus be a very important consideration that affects the
overall efficiency of the algorithm.

It is not critical that you understand how all of the PRNG algorithms
function internally. You can make use of the random numbers generated by
an algorithm without learning the algorithm’s internal details.

The PRNG algorithms covered in this book are as follows:

• Linear Congruential Generator (LCG)

• Multiply With Carry (MWC)

• Mersenne Twister

Different programming languages will use different PRNG algorithms. If your
programming language does not use the algorithm you desire, the algorithm
can be implemented separately in that language.

4.4.1 Linear Congruential Generator

The Linear Congruential Generator (LCG) is one of the oldest and most com-
mon PRNG algorithms in use. LCG is the built-in PRNG for C/C++, Java,

72 Random Number Generation

and C#. LCG is documented in Donald Knuth’s The Art of Programming,
Section 3.2.1. (Knuth, 1997). LCGs should not be used for applications where
high quality randomness is needed. LCG is not typically useful for a Monte
Carlo simulation because of the serial correlation. Serial correlation is the re-
lation of a variable to itself over time. This means LCG random numbers are
not high quality, nor are they suitable for cryptographic applications.

LCG is straightforward to implement and understand. It is implemented
through a linear function clipped into a defined period. The equation for LCG
is shown in Equation 4.2.

Xn+1 = (aXn + c) (mod m) (4.2)
The variables and acceptable ranges for the above equation are defined as
follows:
m, 0 < m, The modulus
a , 0 < a < m, The m u l t i p l i e r
c , 0 <= c < m, The increment
X0 , 0 <= X0 < m, The seed , or s t a r t i n g value

The seed value is updated with each random number generated. For LCG, the
next seed is the internal state. These random numbers will be integers. They
can be converted into the 0 to 1 range by dividing the random numbers by
the maximum integer that the algorithm can produce. The maximum integer
produced will depend on the settings of m, a, and c.

The values chosen for m, a, and c will have a great impact on the ran-
domness of the numbers generated by the PRNG. Typically, you should not
choose values of your own for m, a, and c. Much research has gone into find-
ing optimal values. Wikipedia has a very good summary of the values used by
various PRNGs.

http://en.wikipedia.org/wiki/Linear_congruential_generator

http://en.wikipedia.org/wiki/Linear_congruential_generator

4.4 PRNG Algorithms 73

I typically use the values used by the GCC compiler.
m = 2e31
a = 1103515245
c = 12345

While LCG is a very commonly used PRNG, the Mersenne Twister is often a
better alternative.

4.4.2 Multiply with Carry

The Multiply with Carry (MWC) PRNG was invented by George Marsaglia
for the purpose of generating sequences of random integers with large periods.
(Marsaglia, 1991) It uses an initial seed set from two to many thousands of
randomly chosen values. The main advantages of the MWC method are that
it invokes simple computer integer arithmetic and leads to very fast generation
of sequences of random numbers. MWC has immense periods, ranging from
around 260 to 2 to the power of 2000000.

MWC works somewhat similarly to LCG. Assuming 32 bit registers, LCG
uses only the lower 32 bits of the multiplication (Equation 4.2). MWC makes
use of these higher bits through a carry. Additionally, multiple seed values are
used. These seed values are typically created with another PRNG algorithm,
such as LCG.

We must first define a variable r to describe the “lag” of the MWC. We
must provide a number of seed values equal to r. Like the LCG algorithm
(Equation 4.2), we also have a modulus and a multiplier. However, there is
no increment in this case. The equation used to generate the random integers
for MWC is shown in Equation 4.3.

xn = (axn−r + cn−1) mod b, n ≥ r (4.3)
The multiplier is represented by a, while the modulus is represented by b.
There is an additional variable c, which represents the carry. The calculation
for the carry is shown in Equation 4.4.

cn =
⌊
axn−r + cn−1

b

⌋
, n ≥ r (4.4)

74 Random Number Generation

The variable n represents the number in the sequence you are calculating. It
is important that n always be greater than r. This is because the x values
before n are the seed values, and we have r seeds.

Equation 4.4 is very similar to 4.3, but while 4.3 uses the modulus operator
to return the remainder, 4.4 actually carries out the division. We then use the
floor of this result as the carry. The floor is the largest integer part of a
number. For example, the floor of 7.3 would be 7. However, the floor of -7.3
would be -8. The floor of -7 would be -7.

The reason that we use the floor operator in Equation 4.4 is to ensure an
integer result. Typically these operations are carried out on integer variables
so the floor operator is given to make Equation 4.4 mathematically correct.
The code examples for MWC do not make use of a call to the floor function.

The MWC generator has a much larger period than LCG, and its imple-
mentations are typically very fast to execute. It is an improvement over LCG,
but it is not a commonly used generator. It is not the default random number
generator for any computer language that I am aware of.

4.4.3 Mersenne Twister

The Mersenne Twister is a PRNG developed in 1997 by Makoto Matsumoto
and Takuji Nishimura. It provides for fast generation of very high quality
pseudorandom integers. The Mersenne Twister was designed specifically to
address many of the flaws found in older algorithms. (Matsumoto, 1998)

The Mersenne Twister is a very popular PRNG. It is the “built in” PRNG
for Ruby, Python, and R. This book’s examples also contain implementations
for other languages. The Mersenne Twister algorithm creates high quality
random numbers suitable for Monte Carlo simulations. Mersenne Twister is
not a cryptographically secure generator. However, its execution speed and
high quality randomness make it a very attractive generator for AI.

The name Mersenne Twister comes from the fact that that the period of
the Mersenne Twister is always chosen to be a Mersenne prime number.

4.4 PRNG Algorithms 75

A prime number is any number that can only be divided evenly by itself
and one. For example, 5 is a prime number. A Mersenne prime number is any
number n where M is also a prime number, as seen in Equation 4.5.

Mn = 2n − 1 (4.5)
To see how this works, consider 5, which is a Mersenne prime number.
2ˆ5 = 32
32 − 1 = 31

The number 31 is prime, so the number 5 is a Mersenne prime number. You
can find a list of the known Mersenne prime numbers at the following URL.

http://en.wikipedia.org/wiki/Mersenne_prime
Some other Mersenne primes are shown below.

2
3
5
7
13
17
19
31
61
89
107
127
521
607
1 ,279
2 ,203
2 ,281
3 ,217
4 ,253
4 ,423 (Wikipedia , 2013)

The Mersenne Twister algorithm’s implementation is much more complex than
the algorithms already described in this chapter, and a full description of it is
beyond the scope of this book. The code examples do contain an implementa-

http://en.wikipedia.org/wiki/Mersenne_prime

76 Random Number Generation

tion of the Mersenne Twister based on the original C implementation provided
by Matsumoto.

One of the more tricky aspects of implementing the Mersenne Twister is
that it relies on bit shifts. This can be tricky for languages that do not support
unsigned numbers. Java’s non-support of unsigned numbers makes a Java
implementation particularly tricky. For other languages, it is important to
make sure that the variable sizes match the original C code.

4.4.4 Box Muller Transformation

Not all programming languages support the generation of random numbers in
a normal distribution. You might also be using a custom PRNG not provided
by your programming language. There is an algorithm that can transform a
continuous random number distribution into a normal one. This algorithm is
called the Box Muller Transformation. (Box, 1958)

The following pseudo code can be used to transform regular continuous
random numbers into normal random numbers. (Ross, 2009) The Box Muller
Transformation generates numbers two at a time. To keep track of the pairs,
we will place the two numbers into y1 and y2. We will use the variable
useLast to track if there is a value in y2 waiting to be used. The variable y1
will ultimately be returned, so if useLast is set to true, then move y2 into
y1.
i f (useLast)
{

y1 = y2 ;
useLast = fa l se ;

} else
{

4.5 Estimating PI with Monte Carlo 77

Begin by generating x1 and y1, both in the range -1 to 1. Because rand()
normally returns 0 to 1, we scale x1 and y1. We then square and sum both
x1 and y1, giving w. We continue until we have a w that is greater than or
equal to 1.0.
do
{

x1 = 2 .0 ∗ rand () − 1 . 0 ;
x2 = 2 .0 ∗ rand () − 1 . 0 ;
w = x1 ∗ x1 + x2 ∗ x2 ;

} while (w >= 1 . 0) ;
w= sq r t ((−2.0 ∗ l og (w)) / w) ;

Box Muller works by calculating two independent uniform distributions, stored
in x1 and x2. A scaling factor w is calculated across them; it allows x1 and
x2 to be converted into a normally distributed random number.

y1 = x1 ∗ w;
y2 = x2 ∗ w;
useLast = true ;
}

We scale both x1 and x2, storing the results in y1 and y2.
return Y1 ;

We immediately return y1 and set useLast to true. The next call to the
function will return y2.

4.5 Estimating PI with Monte Carlo

Monte Carlo algorithms attempt to estimate through random sampling, as it
can be time intensive to calculate the actual value. Monte Carlo makes use of
random samples to generate a good estimate. There are many different Monte
Carlo techniques, some of which are hybrids between Monte Carlo and other
techniques. (Robert, 2005) Later in this book, we will learn a Monte Carlo
method called Simulated Annealing.

78 Random Number Generation

One simple example of Monte Carlo is its estimation of the value of PI.
Figure 4.4 shows a circle perfectly inscribed inside of a square.

Figure 4.4: A Circle Inscribed in a Square

We will now place random points inside of the square and circle. The ratio
of points inside to outside will tell us the value of PI. The area of the square
is its length multiplied by its width. Because a square has the same width as
length, the area of the square is essentially the width times itself, or width
squared.

A circle’s area is PI times its radius squared. The diameter of the circle is
the same as the width of the square. We will calculate the ratio of the area of
the circle to the square by using Equation 4.6.

p = πr2

(2r)2 = π

4 (4.6)

4.6 Chapter Summary 79

The width of the square is the same as two times the circle’s radius. So we
can describe the square’s diameter as two times the radius squared. We will
take the ratio of points inside the circle to outside and multiply by 4. This
will give us an approximation of PI.

The pseudo code to produce this is shown below.
t r i e s = 0 ;
s u c c e s s = 0 ;
for i from 0 to 10000
{

// p i ck a po in t a t random .
x = rand () ;
y = rand () ;
t r i e s = t i e s + 1 ;
// was the po in t i n s i d e o f a c i r c l e ?
i f (x ∗ x + y ∗ y <= 1)
{
s u c c e s s++;
}
}
pi = 4 ∗ s u c c e s s / t r i e s ;

As we consider more points we gain a more accurate approximation of PI.

4.6 Chapter Summary

Random numbers are very useful to AI programs, particularly Monte Carlo
simulations. A number of different random number generation algorithms
exist. All are called pseudorandom number generators (PRNG). These random
number generators vary in their ability to produce quality random numbers.

Some PRNGs are said to be cryptographically secure (CSPRNG). A ran-
dom number generator may produce high quality random numbers, yet not
be cryptographically secure. CSPRNG implies that the internal state of the
algorithm cannot easily be guessed by observing the output of the algorithm.
It is not necessary to have a CSPRNG for AI applications. For AI, we are
primarily interested in obtaining high quality random numbers and less inter-
ested in ensuring that these numbers do not reveal the internal state of the

80 Random Number Generation

algorithm.
One of the earliest and most common PRNG algorithms is the Linear Con-

gruential Generator (LCG). While LCG can produce decent random numbers,
the quality is not good enough for Monte Carlo simulations. Multiply with
Carry (MWC) was created to overcome some of the limitations of LCG. The
Mersenne Twister algorithm quickly produces high quality random numbers.
Mersenne Twister is acceptable for a Monte Carlo simulation.

A Monte Carlo simulation estimates a large problem by sampling small
pieces of it. In this chapter, we saw that we could estimate PI using Monte
Carlo. We looked at a circle that was perfectly inscribed inside of a square.
We randomly chose points and determined what points were inside of the circle
and what were not. The ratio of these two point sets told us the value of PI.

The last two chapters introduced distance calculation and random num-
bers. The next chapter will show us an algorithm that combines both tech-
niques. It will show how observations can be divided into similar groups based
on their distances from each other. K-Means clustering is one common tech-
nique for performing such divisions.

4.6 Chapter Summary 81

83

Chapter 5

K-Means Clustering

• Clustering

• Centroid

• Unsupervised Training

• K-Means

In previous chapters we saw that the input to a machine-learning algorithm is
typically a vector of floating point numbers. Each of these vectors is called an
observation, while the individual numbers that make up the vectors are called
features.

In this chapter we will learn about clustering. Clustering is the process
of placing together observations with similar features, and thereby creating a
cluster.

Clustering is a very useful means of breaking observations into a speci-
fied number of groups. Most clustering algorithms require you to specify the
number of groups beforehand. Some clustering algorithms can automatically
determine an optimal number of groups. This chapter focuses on the K-Means
algorithm.

The process of clustering a finite number of observations into a specified
number of clusters is called NP-Hard. NP-Hard is an abbreviation for non-
deterministic polynomial-time. Informally, NP-Hard can be defined as prob-

84 K-Means Clustering

lems that cannot be solved via a brute force search, when there are simply too
many different combinations to search every potential solution to a problem.
Clustering a non-trivial number of observations is NP-Hard.

K-Means makes use of random numbers to search for an acceptable clus-
tering arrangement for the observations. Because the algorithm is based on
random numbers, K-Means is said to be nondeterministic. This means that
multiple runs of the K-Means algorithm will result in different assignment of
observations to clusters.

The opposite of a nondeterministic algorithm is a deterministic algorithm.
Deterministic algorithms always produce the same output, given consistent
input. Nearly all of the algorithms presented in this book are nondeterministic.

Clustering can be used both independently and as a component to a larger
machine-learning algorithm. Independently, clustering can be used to place
similar items into groups. For example, you may have a large amount of ob-
servations that represent the buying habits of individuals. If each observation
represents a customer, customers can be clustered. This allows you to make
suggestive sales to customers based on what other customers in the same clus-
ter have purchased.

Genetic algorithms that use speciation often make use of clustering as a
component of the genetic algorithm. Genetic algorithms find solutions fol-
lowing a process that is loosely modeled after Darwinian evolution. (Banzhaf,
1998) Potential solutions to a problem compete with each other and reproduce
to create potentially better solutions that carry the desirable traits from the
parents. Often it is desirable to break the potential solutions into species and
only allow breeding within a species. Because the potential solutions are of-
ten vectors, K-Means can be used to speciate the potential solutions. (Green,
2009)

The K-Means algorithm has been around, in various forms, since the 1950s.
This algorithm has gone through a number of revisions by various researchers.
James MacQueen first used the term “K-Means” in 1967. The actual idea for
K-Means goes back to Hugo Steinhaus in 1957. Stuart Lloyd first proposed the
standard algorithm in 1957 at Bell labs. However, his work wasn’t published
outside Bell labs until 1982. In 1965, E. W. Forgy published essentially the
same method, which is why it is sometimes referred to as the Lloyd-Forgy

5.1 Understanding Training Sets 85

algorithm. A more efficient version was proposed and published in Fortran by
Hartigan and Wong in 1975 and revised in 1979.

5.1 Understanding Training Sets

Sets of observations are usually grouped into large collections called training
sets. This data is used to train the machine-learning algorithm. Training is the
process where the machine-learning algorithm is modified so that the output
from the algorithm provides the desired information.

There are two very broad classes of machine learning algorithm that take
very different types of training sets. Training is either supervised or unsu-
pervised. When performing unsupervised training, you provide the algorithm
with an input observation as a vector. However, you do not specify an output
vector that represents the expected, or ideal, output. Clustering is a type of
unsupervised training.

5.1.1 Unsupervised Training

Recall the iris data set used in previous chapters? The iris data set has been
applied to many different machine-learning algorithms. It can be used for both
supervised and unsupervised training. This section shows how the iris data
set can be applied to both.

First, we will take a look at how we would present the iris data set for
unsupervised clustering. Recall that the iris data set consists of four individual
ratio observations about the dimensions of the iris petals. Additionally, the
species of the iris is specified. Listing 5.1 shows a sampling from the iris data
set.

86 K-Means Clustering

Listing 5.1: Several Rows from the Iris Data Set
5 . 1 , 3 . 5 , 1 . 4 , 0 . 2 , I r i s −s e t o s a
4 . 9 , 3 . 0 , 1 . 4 , 0 . 2 , I r i s −s e t o s a
. . .
7 . 0 , 3 . 2 , 4 . 7 , 1 . 4 , I r i s −v e r s i c o l o r
6 . 4 , 3 . 2 , 4 . 5 , 1 . 5 , I r i s −v e r s i c o l o r
. . .
6 . 3 , 3 . 3 , 6 . 0 , 2 . 5 , I r i s −v i r g i n i c a
5 . 8 , 2 . 7 , 5 . 1 , 1 . 9 , I r i s −v i r g i n i c a

For an unsupervised clustering, we would most likely use the first four measure-
ments and ignore the species. We might tag the observations to the species,
perhaps for later comparison. However, the clustering algorithm does not need
to know the species, because this is unsupervised training. The algorithm will
not aim to determine what species the iris is, but will rather place the obser-
vations into clusters based on similarities among the observations.

It is also important to note that it is not necessary to normalize the four
observations. K-Means clustering does not inherently require normalization.
Some other algorithms will require normalization, of course. For clustering the
iris data set, normalization is optional. You should only use clustering with
K-Means if one or more of the features are so large that it might overwhelm
the others. The four ratio features of the iris data set are all reasonably close
in value, so K-Means clustering is not necessary in this case.

The iris data set does not have enough information expressed in the four
ratio features to properly cluster it by species. This is okay. For clustering,
we are really trying to visualize how close observations are and what clusters
they might fall into.

5.1 Understanding Training Sets 87

Figure 5.1 shows one attempt to cluster the iris data set.

Figure 5.1: Iris Data Set Clustered

It will take some explanation to show what Figure 5.1 depicts, as there is
quite a bit going on in this graph. The clusters are shown by color. They are
also circled, for the benefit of those viewing this in black and white media.
You can see that there are three clusters: red, green, and blue.

Each point is designated one of three total characters, which are pluses,
asterisks, and O’s. The character type indicates the species, as specified by
the file in Listing 5.1. If the clustering algorithm were able to correctly cluster
the iris species, each character of the same type would be the same color. If
you look at Figure 5.1, you will see that this is not the case.

While you can see that the clusters are clearly defined, they do not line up
with the species. This is mostly unavoidable. K-Means will sometimes come

88 K-Means Clustering

closer to picking the species, due to its random nature. However, if you look
at Figure 5.1, you will see that two regions are linearly separable. This means
you could draw a line between them. However, two of the iris species are not
linearly separable. There is overlap. It would be impossible for unsupervised
clustering alone to find the separation between these two species.

You may be wondering how the four dimensional iris vectors were drawn on
a two dimensional graph. I used R to reduce the dimensions to two for graphing
purposes. Dimension reduction is a common technique for data visualization,
and was done using R’s cmdscale function.

5.1.2 Supervised Training

Supervised training is more restricted than unsupervised. A supervised train-
ing set consists of pairs of input and ideal output data. For the iris data set,
you would input the four ratio measurement observations as a four dimension
input vector. You would likely use one-of-n encoding to encode the species
data into an ideal output vector. The machine-learning algorithm would be
rated on how well it produced the expected output vector, given the input
vector. We will use supervised training with the iris data later in this book.

5.2 Understanding the K-Means Algorithm

The K-Means algorithm is relatively simple to implement. It works by assign-
ing observations into a set number of clusters. There are three distinct steps
to the K-Means algorithm: (Russel, 2009)

• Initialization Step

• Assignment Step

• Update Step

There are two different means by which the initialization step can be accom-
plished. (Hamerly, 2002) These two initialization methods will be covered after

5.2 Understanding the K-Means Algorithm 89

we cover the other two steps. For now, just assume that the observations are
initially assigned to the clusters by some means.

5.2.1 Assignment Step

The assignment and update steps are repeated until no observation moves to
a new cluster. Each cluster is defined by two aspects. The first is its centroid,
which is a vector of the same length as the observation. It is essentially an
observation itself, but in fact represents the average of all observations inside
the cluster. The centroid is thus essentially the point that is at the center of
all observations in a cluster. In addition to a centroid, each cluster holds a list
of observations assigned to that cluster.

The assignment step loops over all of the observations and assigns them
to the cluster that has the nearest centroid. By nearest, I mean the shortest
distance between the two vectors. Typically, the Euclidean distance is used;
however, any of the distance algorithms from the last chapter would work.

It is also important for the update step to keep track of whether any obser-
vation moves from one cluster to another. This allows the K-Means algorithm
to know when the algorithm is complete. If no observations move to a new
cluster, then the K-Means algorithm is considered complete.

The pseudo code for the assignment step is shown here. First, we set a
variable named done to true. We start out assuming that we are done. If
any observation is reassigned from one cluster to another, we will set done to
false.
done = true

We must now check each cluster and determine whether that cluster’s obser-
vations might need to be moved to another cluster. We do not keep a list of
observations; the observations “live” inside of clusters.
f o r each (c l u s t e r in c l u s t e r s)
{

90 K-Means Clustering

We now loop over every observation in the current cluster and reassign if
necessary.

f o r each (obse rvat i on in c l u s t e r)
{

Find what cluster is currently closest to the observation. The findNearest-
Cluster function simply finds the minimum Euclidean distance between the
current observation and the centroids of all the clusters.

t a r g e t C l u s t e r = f i ndNea r e s tC lu s t e r (obse rvat i on) ;

If the targetCluster is not the current cluster, then a move must occur.
Perform the move and record that we are not done by setting done to false.

i f (t a r g e t C l u s t e r != c l u s t e r)
{

c l u s t e r . remove (obse rvat i on) ;
t a r g e t C l u s t e r . add (obse rvat i on) ;
done = fa l se ;

}
}
}
return done ;

Finally, return the value of done so that the rest of the program can decide if
it should continue iterating or exit.

5.2.2 Update Step

The update step is executed after the assignment step. These two steps keep
cycling until there no observations change clusters during the assignment step.
Like many machine learning algorithms, K-Means is iterative. The training
process goes through a large number of iterations, and every iteration should
see some gradual improvement. At some point, each iteration brings little or
no improvement. This is when an iterative algorithm stops.

The real work of the update step is to recalculate the centroids for each of
the clusters. During the previous assignment step, it is likely that the contents
of each cluster were changed. Because of this, the centroid for each cluster may

5.3 Initializing the K-Means Algorithm 91

have become invalid. To account for this, we need to recalculate each cluster’s
centroid, which is a matter of simply calculating the mean of each feature of
the observation. For example, if the following three iris flowers were all in a
cluster, we would need to calculate a mean vector of four dimensions. This
mean becomes the centroid for the cluster.
5 . 1 , 3 . 5 , 1 . 4 , 0 . 2 , I r i s −s e t o s a
4 . 9 , 3 . 0 , 1 . 4 , 0 . 2 , I r i s −s e t o s a
7 . 0 , 3 . 2 , 4 . 7 , 1 . 4 , I r i s −v e r s i c o l o r

This vector would be calculated as follows:
element1 = (5 . 1 + 4 .9 + 7 . 0) / 3 = 5 .7
element2 = (3 . 5 + 3 .0 + 3 . 2) / 3 = 3 .2
element3 = (1 . 4 + 1 .4 + 4 . 7) / 3 = 2 .5
element4 = (0 . 2 + 0 .2 + 1 . 4) /3 = 0 .6

Which results in the following centroid:
[5 . 7 , 3 . 2 , 2 . 5 , 0 . 6]

Of course, as discussed previously, the iris species column is not used by the
algorithm.

5.3 Initializing the K-Means Algorithm

In the last few sections we saw how the assign and update steps were per-
formed. Both of these operate on clusters that already have observations
assigned to them. We must therefore start in a state where observations are
assigned to clusters.

In this section we will look at two different means of initializing the clusters
randomly. The initialization step of K-Means is stochastic, or random. The up-
date and assign steps are both deterministic. However, because the algorithm
has a non-deterministic beginning, the entire algorithm is non-deterministic.

92 K-Means Clustering

There are two very popular means of initializing the K-Means algorithm:
the Random algorithm and the Forgy algorithm. The name of first method–
“Random”–is a bit misleading, however, as both algorithms use random num-
bers.

5.3.1 Random K-Means Initialization

The random algorithm is very simple. You simply create the requested K
number of clusters and assign random observations to each of these clusters.
It is also important that we do not let any cluster have zero observations. Of
course, K should never be higher than the number of observations. That is,
you cannot cluster 30 observations into 50 clusters. It is also very important
that the “random” initialization proceed directly to the update step. This
allows the centroids to be calculated for the newly created clusters.

First, we calculate the number of dimensions the observations have. The
K-Means algorithm requires that each dimension contain the same number of
dimensions. This is simply the array length.
dimensions = theObservat ions . l ength ;

Next, we must create K clusters. We loop from zero up to, but not including
K.
for i from 0 to K
{

c l u s t e r s . add (new Clus te r (dimensions)) ;
}

We must now assign each of the observations to a random cluster. First, loop
over all observations provided.
f o r each (obse rvat i on in theObservat ions)
{

5.3 Initializing the K-Means Algorithm 93

Then, pick a random cluster. Assign a random integer between 0 and K-1.
Add that observation to the cluster.

c l u s t e r I n d e x = randInt (K) ;
c l u s t e r = c l u s t e r s [c l u s t e r I n d e x] ;
c l u s t e r . add (obse rvat i on) ;
}

We can now handle any clusters that might have no observations assigned to
them.
f o r each (c l u s t e r in this . c l u s t e r s)
{

i f (c l u s t e r . l ength == 0)
{

It is time to add one observation to this cluster. We do not want to create
another zero length cluster in the process of fixing this cluster, however. Find
a random cluster that has more than one observation already. Make sure that
the chosen cluster is not the same cluster as that we are trying to fill.

done = fa l se ;
while (! done)
{

sourceIndex = randInt (K) ;
source = c l u s t e r s [sourceIndex] ;
i f (source != c l u s t e r && source . l ength > 1)
{

Once we find the cluster, we can move the observation. Choose a random
observation from the source cluster and move it to the empty cluster. We can
now set the done flag to true.

sourceObservat ionIndex = rndInt (source . l ength) ;
sourceObservat ion = source [sourceObservat ionIndex] ;
source . remove (sourceObservat ionIndex) ;
c l u s t e r . add (sourceObservat ion) ;
done = true ;

}
}
}
}
updateStep () ;

94 K-Means Clustering

Once the observations have been assigned to their clusters, we can perform
the update step.

Figure 5.2 shows the flow chart for a K-Means algorithm that uses random
initialization.

Figure 5.2: Random Initialization

Note that the random initialization goes directly to update form initial-
ization. Performing the assignment step after a random initialization would
not make sense, because the initialization step already assigned the observa-
tions to clusters. You will see in the next section that the for Forgy K-Means
initialization has a slightly different flow.

5.3 Initializing the K-Means Algorithm 95

5.3.2 Forgy K-Means Initialization

Forgy initialization works by first establishing the centroid values and then
assigning the observations to the nearest clusters. This is done using the
pseudo code described below. First, determine the number of dimensions in the
observations. Each observation should have the same number of dimensions.
We will also keep a hash set of usedObservations. We will not use every
observation for initialization, but we do not want to reuse an observation,
either.
dimensions = theObservat ions . l ength ;
usedObservat ions = new HashSet () ;

We now loop through and create K clusters.
for i from 0 to K

Create the cluster, with the correct number of dimensions.
c l u s t e r = new Clus te r (dimensions) ;
c l u s t e r s . add (c l u s t e r) ;

With the cluster created, select a random observation. Do not choose an
observation that has already been used.

observat ionIndex = −1;

while (observat ionIndex == −1)
{

observat ionIndex = randInt (theObservat ions . l ength) ;
i f (usedObservat ions . conta in s (observat ionIndex))
{

observat ionIndex = −1;
}

}

Now we have a random observation that was not previously used. Create a
cluster with only that observation and assign that observation to the cluster’s
centroid.

obse rvat i on = theObservat ions [observat ionIndex] ;
usedObservat ions . add (observat ionIndex) ;
}

96 K-Means Clustering

Figure 5.3 shows the flow of an application that uses Forgy initialization.

Figure 5.3: Forgy Initialization

As you can see from the above figure, the assignment step is processed
right after the initialization step. This is because Forgy has already set up
the cluster centroids, and we now need to assign all of the observations to the
clusters.

5.4 Chapter Summary 97

5.4 Chapter Summary

Clustering is a method for placing observations into clusters. The similar-
ity between observations determines what observations are placed into what
clusters. Clustering is an example of unsupervised training.

There are a number of different algorithms for clustering. One of the
most popular is the K-Means algorithm. The K-Means algorithm assigns the
observations into a fixed number of clusters. It takes several iterations for
K-Means to move all of the observations into acceptable clusters. You should
iterate the K-Means algorithm until you have an iteration where no observation
changes clusters.

There are three different steps that are used in the K-Means algorithm. The
initialization step creates the initial clusters. The assignment step updates the
centroid for each cluster. The centroid is the vector average of all observations
assigned to that cluster. The update step recalculates all centroid values based
on observations assigned to those clusters.

This chapter introduced you to clustering and unsupervised training. In
the next chapter, you will learn about error calculation. Error calculation
is primarily used in supervised training. It helps to calculate the difference
between the actual output and the ideal output of a machine learning method.

99

Chapter 6

Error Calculation

• Supervised Training

• Sum of Squares Error (SSE)

• Mean Squares (MSE)

• Root Mean Squares

• Data Sets

Error calculation is very important for supervised training. A training set for
supervised training consists of vector pairs. These pairs align input vectors
with an output, or ideal, vector that is the expected response to the provided
input vectors.

Listing 6.1 shows an example of how vector pairs would be constructed for
the XOR function.

Listing 6.1: The XOR Function/Operator
Input : [0 , 0] ; I d e a l : [0]
Input : [0 , 1] ; I d e a l : [1]
Input : [1 , 0] ; I d e a l : [1]
Input : [1 , 1] ; I d e a l : [0]

The XOR function always returns true when the two inputs are different. If
the two inputs are the same, then it returns false. In the above listing, true

100 Error Calculation

is normalized to 1 and false to 0. The above training set would be used to
teach a machine-learning algorithm to emulate the XOR function. This is a
common introductory task for machine learning algorithms.

In the above listing, there are two inputs: 0 and 1. The ideal output for
each of the four input vectors is also provided. This training set contains four
input/ideal output pairs.

There are a variety of different error calculation methods that are com-
monly used with machine learning algorithms. In this chapter we will look at
the following three error calculation methods:

• Sum of Squares Error (SSE)

• Mean Square Error (MSE)

• Root Mean Square Error (RMS)

The most commonly used error calculation method is Mean Square Error
(MSE). However, this does not mean the MSE should always be used. Some-
times, the machine-learning algorithm in use will dictate the error calculation
method that you should use. You can also use multiple error calculation meth-
ods if necessary, for comparison.

The following sections will describe each of these error calculation methods.

6.1 Sum of Squares Error

The Sum of Squares Error (SSE) is a very simple error calculation method
used by some machine learning algorithms. A high SSE value indicates that
there is a large difference between the expected output and the actual output.
A training algorithm should work to minimize SSE.

6.2 Root Mean Square 101

The calculation of SSE is shown in Equation 6.1. (Draper, 1998)

SSE =
∑

i

(ŷpi − ȳpi)2 (6.1)

Where y hat is the ideal output and y bar is the actual output.
The most common reason to use SSE is that some training algorithms

require it. SSE is essentially the sum of squares of the individual variances
of each output. Because of this, bigger training sets will always tend to have
larger SSE values. This is one of the weaknesses of the SSE value–you cannot
directly compare the SSE values from two training sets of different sizes.

6.2 Root Mean Square

The Root Mean Square (RMS) error calculation method is similar to the SSE
method in that it is based on the squares of the individual differences between
expected output vectors and the actual output. However, a mean is taken of
all of these squares and then the square root is taken of this mean. Because
the RMS is based on a mean, you can compare the RMS values of two different
training sets. (Draper, 1998)

RMS =
√√√√ 1
n

n∑
i=1

(ŷi − ȳ)2 (6.2)

Where y hat is the ideal output and y bar is the actual output.

6.3 Mean Square Error

MSE error calculation is the most commonly used error calculation for machine
learning. Most, but not all, Internet examples of neural networks, support vec-
tor machines, and other models make use of MSE. MSE is shown in Equation
6.3. (Draper, 1998)

MSE = 1
n

n∑
i=1

(ŷi − ȳi)2 (6.3)

102 Error Calculation

Where y hat is the ideal output and y bar is the actual output.
The mean square error is essentially the mean of the squares of the indi-

vidual differences. Because the individual differences are squared, it does not
matter to MSE if the difference is positive or negative.

You may be wondering how to choose between RMS and MSE. RMS and
MSE are very similar. One important difference is that RMS is linear whereas
MSE is not. If you were to double every error in the training set, the RMS
errors would also double, while the MSE errors would not. Sometimes it is
useful to be able to compare errors like this.

6.4 Comparison of Error Calculation Methods

This section shows how to add random distortion to a training set. Listing
6.2 shows how small, medium, large, and huge distortions affect each of the
training sets.

Listing 6.2: Error Calculation Methods
Type SSE MSE RMS
Small 2505 0 .01 0 .1
Medium 62634 0 .251 0 .501
Large 250538 1 .002 1 .001
Huge 25053881 100.216 10 .011

The largest effect is on the SSE error calculation, because SSE is a simple
summation of the errors. SSE has a larger change than RMS. You can see
that RMS is essentially the square root of RMS.

6.4.1 Partitioning Training Data

You typically do not want to use all available data for training, as there is
almost always noise in your data. The word “noise” is used to describe small
distortions that are not consistently reproducible. A successfully trained algo-
rithm will be able to see through the noise and still predict accurately. Over
fitting occurs when the algorithm memorizes the noise. Because the noise is
not consistent, this will greatly impair the algorithm’s ability to recognize data

6.4 Comparison of Error Calculation Methods 103

outside of the training set. Because noise is not consistent, it will cause the
algorithm to see false patterns. Such patterns create a phenomenon called
training set bias.

Selection bias is another concern. If you need to choose from among several
competing machine learning algorithms, you should not simply choose the
algorithm that trained to the lowest error, or you will likely pick the most over
fit model.

Available data is typically broken into three sets to avoid bias. It is impor-
tant that these sets are randomly sampled from available data, as you do not
want to introduce any bias when selecting the items for each set. Randomly
select items from the available data in order to avoid bias. For time-series data,
you select chronological ranges. The three sets that training data is typically
divided into are listed here.

• Training set

• Validation set

• Test set

The training set is the data with which you train your algorithm. This is
usually the largest of three sets. Training data is often selected as 80% of
available data. You can then split the remaining 20% between validation and
test. It is important to remember that error on your training data is often very
optimistic. This is because the training data was used to train the algorithm.

If you are evaluating several different algorithms, you should use the val-
idation set next to see what algorithms learned the best. Use data that the
algorithms did not see during the training, as the algorithms should be unbi-
ased to this data.

104 Error Calculation

6.5 Chapter Summary

This chapter introduced supervised training, using data sets. A supervised
data set is used with a supervised training algorithm and contains pairs of
vectors. Each of these pairs represents one element in the training set. Each
pair contains an input vector and an output vector that represents the expected
output from that input vector. Machine learning algorithms are evaluated
based on how closely the actual output matches the ideal expected output.

There are several different error calculation algorithms. One of the most
basic is the Sum of Squares Error (SSE). This method calculates the difference
between the actual and expected outputs for the machine-learning algorithm.
The SSE algorithm then squares and sums each of these differences.

The Mean Squares Error (MSE) is one of the most commonly used dis-
tance calculation methods in machine learning. This calculation is similar to
SSE; however, MSE is divided by the number of elements, thus producing an
average.

Once you have selected your algorithm, you can use the test set to give you
an idea of how well the algorithm might perform with real data. This should
be the final indicator of the overall performance of your chosen model. MSE
is not linear–if the difference doubles, MSE will not double.

The Root Mean Square (RMS) error is essentially the square root of the
MSE error. Unlike MSE, RMS is linear. This allows you to directly evaluate
two RMS errors. If the difference between the actual and ideal vectors doubles,
then RMS will also double.

This chapter introduced several concepts in supervised training and de-
scribed how to construct supervised training sets. It also discussed several
methods for evaluating these data sets. The next chapter introduces machine
learning. You will see how simple models can be constructed and trained to
produce the correct output.

6.5 Chapter Summary 105

107

Chapter 7

Towards Machine Learning

• Training a Polynomial

• Greedy Random Training

• RBF Functions

• RBF Network Model

In previous chapters we saw that a machine-learning algorithm typically ac-
cepts an input vector and produces an output vector. To transform this input
vector into an output vector, two additional vectors can be used. These addi-
tional vectors are referred to as long-term and short-term memory. Long-term
memory can also be referred to as weights or coefficients. It is adjusted through
training. Short-term memory is not used by all machine-learning algorithms.

It might be helpful to think of a machine-learning algorithm as a function.
We will treat a very simple equation as though it were a machine-learning
algorithm in equation 7.1, in order to demonstrate.

f(x) = 5x (7.1)
Here we think of x as a single value–a scalar, rather than a vector. The
value 5 is a coefficient. Coefficients are usually grouped into a vector and
represent the long-term memory of the algorithm. When we train Equation

108 Towards Machine Learning

7.1, we will adjust the coefficient until we arrive at a value that produces the
desired output. If Listing 7.1 represented the training data for the algorithm
of Equation 7.1, we could feed the input into Equation 7.1 and evaluate the
results.

Listing 7.1: Simple Training Data
Input : [1] , Des i red Output : [7]
Input : [2] , Des i red Output : [1 4]
Input : [3] , Des i red Output : [2 1]

The coefficient of 5 would not provide the desired output. As we saw in
Chapter 6, we could calculate the error between the above desired outputs
and the actual outputs provided in Listing 7.1. For example, the input of 1 to
Equation 7.1 would produce 5, while our desired output for 1 is 7.

There are many different ways to find a suitable coefficient for machine
learning algorithms. Coefficient adjustment methods is one of the primary
areas of research for machine learning.

If the machine learning algorithm is a linear function, as is the case with
Equation 7.1, mathematical techniques can often be used to find a suitable
coefficient. For this simple case, we only need to find the coefficient that
yields 7 when multiplied by 1. This coefficient would be 7. A coefficient of 7
also yields a zero error for the other training set elements.

Not all data sets will be so easy. In fact, it is extremely rare to fit the
coefficients (or long-term memory vectors) to result in an error that is exactly
zero. This is because most data contains noise. Noise is any outcome that is
not consistently reproducible given its input data, and thus contributes to a
higher error rate. Because of noise, the goal of a machine learning algorithm is
usually for the algorithm to perform well on new data, rather than displaying
zero error.

If you do get a zero error, you should be suspicious that your coefficients are
over fit. Over fitting occurs when the machine learning method has memorized
your training data. At this point, the algorithm simply recalls memorized input
vectors rather than learning to abstract output. An over fit algorithm will not
perform well on new data that is not in the original training set.

7.1 Coefficients of a Polynomial 109

We will now look at some methods for optimizing the coefficients to lower
the error and be introduced to a few foundational algorithms for optimizing
the coefficients. The next chapters will discuss more advanced algorithms,
such as simulated annealing and Nelder Mead.

Most training algorithms presented in this book are generic. Given any
long-term memory vector, these algorithms can attempt to optimize. This is
not the case with every training algorithm, however. Some training algorithms
use specific insights into the algorithm that they are trying to train. We will
see such algorithms in Chapter 10. However, most of the algorithms in the
other chapters of this book are generic.

7.1 Coefficients of a Polynomial

This section describes how to implement a generic training method in order
to optimize the coefficients of a polynomial. We will use the polynomial as
the machine-learning algorithm that we seek to optimize. Typically, you will
optimize the coefficients into something more complex than a simple polyno-
mial, but this example will serve as a great introduction to machine learning.
Fitting a polynomial to a dataset illustrates the fundamentals of how more
complex machine learning algorithms work.

A polynomial is a mathematical expression consisting of variables and con-
stant coefficients and uses only the operations of addition, subtraction, multi-
plication, and positive integer exponents. Equation 7.2 shows a typical, third
degree polynomial. (Lial, 2010)

f(x) = 2x2 + 4x+ 6 (7.2)
The above mathematical function accepts a value x and returns a value y.
The input and output vectors for this function are both of size one. There are
three coefficients in Equation 7.1: 2, 4, and 6. In this case, the coefficients
are multiplied against the variable x. The coefficient 2 is multiplied against
x squared, the coefficient 4 is multiplied against x. Even 6 is a coefficient.
Technically 6 is multiplied against x to the power of zero. Though x to the
power of zero is equal to one.

110 Towards Machine Learning

The above polynomial is said to be of the “third degree” because there are
three terms. Each term relates to a coefficient. The three coefficients used in
Equation 7.1 can be thought of as a vector and described as follows:
[2 , 4 , 6]

For Equation 7.1, the coefficient is already specified. Often we will need to
use machine learning to determine what the coefficient(s) should be. To do so,
you would use a training set that includes the expected outputs for a variety
of inputs. Such data can be collected experimentally. In order to fit these
observations to a third degree polynomial, we can use machine learning to
help.

We will begin by creating some training data. We already know that we
want the solution to be the coefficients [2,4,6]. This is a completely contrived
example, but it will demonstrate how to use some basic training algorithms.
To generate the training data, loop over some x values and calculate the
polynomial for each. Then, use random coefficients to train to the correct
coefficients. We will use only the training data to see if we can rebuild the
correct coefficients.

The generated training data is shown in Listing 7.2. As you can see, we
loop the input from -50 to +50 and calculate the ideal output.

Listing 7.2: Polynomial Training Data
[BasicData : input : [−5 0 . 0] , i d e a l : [4 8 0 6 . 0]]
[BasicData : input : [−4 9 . 0] , i d e a l : [4 6 1 2 . 0]]
[BasicData : input : [−4 8 . 0] , i d e a l : [4 4 2 2 . 0]]
. . .
[BasicData : input : [4 7 . 0] , i d e a l : [4 6 1 2 . 0]]
[BasicData : input : [4 8 . 0] , i d e a l : [4 8 0 6 . 0]]
[BasicData : input : [4 9 . 0] , i d e a l : [5 0 0 4 . 0]]

Given the above data, we will now see how the coefficients can be adjusted to
produce the above data. In the next section we will see how we can use the
training data in Listing 7.2 to reconstruct the polynomial. Of course, we will
assume that we did not know the actual polynomial in the first place. We only
assume we have Listing 7.2.

7.2 Introduction to Training 111

7.2 Introduction to Training

There are many different ways to adjust the long-term memory of a machine-
learning algorithm during training. In this section, we will look at greedy
random training. This method is simple to implement. In the next chapter,
we will look at more robust training algorithms. Robust training algorithms
will typically find an optimal setting for long-term memory faster than greedy
random training.

7.2.1 Greedy Random Training

Greedy random training is extremely simple to implement. Essentially, all it
does is randomly select values for the long-term memory vector. This algo-
rithm is greedy in the sense that it only accepts a new memory vector if the
new vector is an improvement over the previous one. This algorithm keeps
choosing new random values for the long-term memory and always maintains
the best vector seen so far. This algorithm is sometimes called a random walk.

112 Towards Machine Learning

This algorithm can be seen in the pseudo code shown in Listing 7.3.

Listing 7.3: Greedy Random Training (minimize score)
f unc t i on i t e r a t i o n (
ltm , // the curren t long term memory vec t o r
lowRange , // the l owe s t va lue to randomize to
highRange // the h i g h e s t va lue to randomize to

)
{

// Score the curren t s t a t e .
o ldScore = c a l c u l a t e S c o r e (ltm) ;
// Keep a copy o f the curren t s t a t e , in case we
// f a i l to improve i t .
l en = ltm . l ength ;
oldLtm = ltm . c l one () ;

// Set to a random s t a t e .
for i from 0 to l en
{
ltm [i] = rand (lowRange , highRange) ;
}
// Score the new random vec to r .
newScore = c a l c u l a t e S c o r e (ltm) ;
// Greedy d e c i s i o n . Did the randomizat ion improve our s t a t e ?
// I f not , then back i t out .
i f (newScore > o ldScore)
{
Ltm = oldLtm . c lone () ;
}
}

The above code implements one iteration of a greedy random algorithm. There
are three parameters that you pass to the above function.

• Parameter 1. The long-term memory vector that you would like to op-
timize.

• Parameters 2 & 3. The low and high ranges for the values that you
would like to randomly assign to the individual elements in the long-
term memory vector.

7.2 Introduction to Training 113

The iteration function then assigns random values to the long-term memory
vector. The score of the vector is compared to the score from before the
randomization. If the vector’s score did not decrease, then throw out the
changes and revert to the previous vector. This is why it is called greedy. It
will only accept improvements. This is not always the best policy. As the old
saying goes, “sometimes you have to take one step backward to take two steps
forward.”

Believe it or not, the greedy random trainer can actually train vectors.
Running it against the polynomial (from Equation 7.2) yields the following
results.
I t e r a t i o n #999984 , Score =37.93061791363337 ,
I t e r a t i o n #999985 , Score =37.93061791363337 ,
I t e r a t i o n #999986 , Score =37.93061791363337 ,
I t e r a t i o n #999987 , Score =37.93061791363337 ,
I t e r a t i o n #999988 , Score =37.93061791363337 ,
I t e r a t i o n #999989 , Score =37.93061791363337 ,
I t e r a t i o n #999990 , Score =37.93061791363337 ,
I t e r a t i o n #999991 , Score =37.93061791363337 ,
I t e r a t i o n #999992 , Score =37.93061791363337 ,
I t e r a t i o n #999993 , Score =37.93061791363337 ,
I t e r a t i o n #999994 , Score =37.93061791363337 ,
I t e r a t i o n #999995 , Score =37.93061791363337 ,
I t e r a t i o n #999996 , Score =37.93061791363337 ,
I t e r a t i o n #999997 , Score =37.93061791363337 ,
I t e r a t i o n #999998 , Score =37.93061791363337 ,
I t e r a t i o n #999999 , Score =37.93061791363337 ,
I t e r a t i o n #1000000 , Score =37.93061791363337 ,
F ina l s c o r e : 37.93061791363337
2.0026889363153195 xˆ2+4.057350732096355x+9.393343096548456

As you can see, the greedy random training algorithm came reasonably close
to the expected coefficients. Instead of getting [2,4,6], we got [2.002, 4.057,
and 9.3933].

The greedy random algorithm is often used as a benchmark. You can com-
pare the greedy random result against a new algorithm that you are evaluating.
If the new algorithm does not outperform the greedy random algorithm, then
you know the new algorithm is performing very poorly.

114 Towards Machine Learning

7.3 Radial Basis Networks

In the last section we looked at how to optimize the coefficients for a polyno-
mial. Most machine learning algorithms are much more complex than a simple
polynomial. In this section we will introduce an RBF Network. (Bishop, 1996)
The RBF network is a statistical model that can be used both for regression
and classification.

There are many different methods for training an RBF network. The RBF
network has a vector that represents its long-term memory. For an RBF
network, the long-term memory is a combination of coefficients and other
parameters. There is no short-term memory vector for the RBF network. It
can be trained by both greedy random and hill climbing algorithms, and is
based on radial basis functions (RBF).

The next section will briefly review RBFs and describe the exact makeup
of this vector.

7.3.1 Radial Basis Functions

Radial basis functions are a very important concept in AI, as many different
AI algorithms make use of them. There are a number of different RBF types,
several of which will be introduced in this chapter.

A radial basis function is symmetric about its center, which is typically
located somewhere along the x-axis. The RBF will reach its maximum value
at the center. This maximum value is called the peak, and is often set to one.
In the context of RBF networks, the peak is always set to one and the center
varies accordingly.

RBFs can have many dimensions. The output of an RBF will always be a
single scalar value, regardless of the number of dimensions in the vector passed
to the RBF.

There are a number of commonly used RBFs. We will start with the most
common: the Gaussian function. Figure 7.1 shows a graph of a 1D Gaussian
function centered at 0.

7.3 Radial Basis Networks 115

Figure 7.1: Gaussian Function

RBF functions are commonly used to selectively scale something, and
Gaussian is no different. Consider Figure 7.1. If this function were used
to scale something, you would have maximum intensity at the center. The in-
tensity would fall off in either the positive or negative directions as you moved
from the center.

Before we can look at the equation for the Gaussian RBF, we must con-
sider how to process the multiple dimensions. It is important to note that
RBFs accept multi-dimensional input to return a single value. It does this by
calculating the distance between the input and the center vector of the RBF.
This distance is called r. The RBF center and input to the RBF must always
have the same number of dimensions for the calculation to occur. Once we
calculate r, then we can calculate the individual RBF function. All of the
RBF functions make use of this calculated r.

116 Towards Machine Learning

Equation 7.3 shows how to calculate r.

r = ||x− xi|| (7.3)
The double vertical bars you see in the equation above represent that the
function describes a distance. Euclidean distance is almost always used for
an RBF. However, other distances might be used for certain very specialized
cases. The examples provided for this book always use the Euclidean distance.
Therefore, r is simply the Euclidean distance between the center and the x
vector. The value r will be used in each of the RBF functions used in this
section.

The equation for a Gaussian RBF is shown in Equation 7.4.

φ(r) = e−r2 (7.4)
Once you’ve calculated r, it is fairly easy to calculate the RBF. The Greek
letter PHI, which you see at the left of the equation, always represents an
RBF.

The Gaussian is not the only RBF, and other RBFs have different shapes.
If you are using the RBF to scale, these different shapes can give you different
ways to scale a number. Figure 7.2 shows the Ricker Wavelet.

Figure 7.2: The Ricker Wavelet (Mexican Hat Function)

The Ricker Wavelet is often used as an RBF. It is often called the Mexican

7.3 Radial Basis Networks 117

hat function, due to its pictorial resemblance to a sombrero. The equation for
the Ricker Wavelet is provided in Equation 7.5.

φ(r) = (1− r2) · e−r2/2 (7.5)
As you can see from Figure 7.2, the Ricker Wavelet actually scales negatively
just at the edges, and then returns to zero.

Different RBF functions are useful in different situations. Some other com-
mon RBF functions include:

• Multiquadric

• Inverse quadratic

• Inverse multiquadric

• Polyharmonic spline

• Thin plate spline

We can make use of the RBF function to implement a statistical model called
the RBF network. We will be able to train this model using any of the tech-
niques discussed so far.

118 Towards Machine Learning

7.3.2 Radial Basis Function Networks

A Radial Basis Function network is a statistical model that can be used for
both classification and regression. It provides a weighted summation of one
or more Radial Basis Functions, each of which receives the weighted input
attributes used to predict the output. The following equation describes an
RBF network.

f(X) =
N∑

i=1
aip(||biX − ci||) (7.6)

Note that the double vertical bars above mean to take the distance. Such
symbols do not specify what distance algorithm to use; this is your choice. In
the above equation X is the input vector of attributes, c is the vector center
of the RBF, p is the chosen RBF (Gaussian, for example), a is the vector
coefficient (or weight) for each RBF, and b specifies the vector coefficient to
weight the input attributes. We will see pseudo code for Equation 7.6 later in
this chapter.

In our example, we will apply the RBF network to the iris data set. Figure
7.3 provides a graphic representation of this application.

Figure 7.3: An RBF Network for the Iris Data

7.3 Radial Basis Networks 119

The above network contains four inputs (the length and width of petals and
sepals), which map to the features that describe each iris species. The above
diagram assumes that we are using one-of-n encoding for the three different
iris species. It would also be possible to use equilateral encoding and have
only two outputs. To keep things simple, however, we will use one-of-n. We
also choose to use three RBF functions. This is purely an arbitrary choice.
Additional RBF functions allow the model to learn more complex data sets.
However, more RBF’s take more time to process.

Arrows represent all coefficients from the equation. The arrows between
the input attributes and RBFs are represented by b in Equation 7.6. Similarly,
the arrows between the RBFs and the summation are represented by a. You
will also note that there is a bias box. This is a synthetic function that
always returns a value of 1. Because the bias function’s output is constant,
no inputs are required. The weights from the bias to the summation function
very similarly to the vector intercept in linear regression. Bias is not always
bad! In this case it is an important component to the RBF network. Bias
nodes are also very common in neural networks.

Because there are multiple summations, you can see that this poses a clas-
sification problem. The highest summation specifies the predicted class. If this
were a regression problem, there would be single output. The single output
would represent the predicted output for regression.

You will also notice that there is a bias node in Figure 7.3. The bias node
is located in the place where an additional RBF function might go. However,
the bias node does not accept any input–unlike an RBF. The bias node always
outputs a constant value of one. Of course, this constant value of 1 is multiplied
by a coefficient value. This has the effect of the coefficient always being directly
added to the output, regardless of the input. Bias nodes are very useful when
the input is zero, as they allow the RBF layer to output values even when the
input is zero.

120 Towards Machine Learning

The long-term memory vector for the RBF network is made up of several
different components:

• Input coefficients

• Output/Summation coefficients

• RBF width scalars (same width in all dimensions)

• RBF center vectors

The RBF network will store all of these components as a single vector. This
vector becomes the long-term memory of the RBF network. We will then
make use of either greedy random or hill climbing training to set the vector to
values that will produce the correct iris species for the features presented.

This model works almost exactly like the polynomial that we saw before.
The only difference is that the equation is much more complex, as we now
must calculate several output values and RBF functions.

7.3.3 Implementing an RBF Network

This section outlines the pseudo code for two major functions in the implemen-
tation of an RBF network. First, we will look at the function that initializes
an RBF network. This function allocates the long-term memory vector that
is used for the RBF network. To create the RBF network, you must provide
the following three pieces of information.

• Input count

• RBF count

• Output count

The input and output counts simply specify the sizes of the input and output
vectors. Your data set will dictate these values. The RBF count is a bit
more subjective. The more RBF functions you have, the better the model
will be able to predict desired outcomes. However, using more RBF functions
increases inefficiency.

7.3 Radial Basis Networks 121

Listing 7.4 shows how an RBF network is initialized.

Listing 7.4: Initializing an RBF Network
f unc t i on initRBFNetwork (
theInputCount , // the number o f inpu t s to the network
rbfCount , // the number o f RBF f u n c t i o n s in the network
theOutputCount // the output count
)
{

r e s u l t = new RBFNetwork () ;
// s e t s imple p r o p e r t i e s on the network
r e s u l t . inputCount = theInputCount ;
r e s u l t . outputCount = theOutputCount ;
// Ca l cu l a t e input and output we igh t counts .
// Add 1 to output to account f o r an ex t ra b i a s node .
inputWeightCount = inputCount ∗ rbfCount ;
outputWeightCount = (rbfCount + 1) ∗ outputCount ;
rbfParams = (inputCount + 1) ∗ rbfCount ;

// a l l o c a t e enough space f o r the long term memory
r e s u l t . longTermMemory = a l l o c (inputWeightCount
+ outputWeightCount + rbfParams) ;
// Set more p r o p e r t i e s on the model
r e s u l t . indexInputWeights = 0 ;
r e s u l t . indexOutputWeights = inputWeightCount + rbfParams ;
// A l l o c a t e RBF f u n c t i o n s
r e s u l t . rb f = new FnRBF[rbfCount] ;
// Set up a l l o f the RBF f u n c t i o n s
for i from 0 to rbfCount
{

// The index f o r the curren t RBF func t i on .
rb f Index = inputWeightCount + ((inputCount + 1) ∗ i) ;
// a l l o c a t e a Gaussian and s p e c i f y the input count and
// the l o c a t i o n in long term memory where t h i s RBF
// func t i on ’ s parameters are s t o r ed . The parameters are
// the width , f o l l o w e d by the cen ter dimensions .
r e s u l t . rb f [i] = new GaussianFunction (

inputCount , r e s u l t . longTermMemory , rb f Index) ;
}
// re turn the newly cons t ruc t ed network
return r e s u l t ;
}

122 Towards Machine Learning

The method begins by allocating an object named result to hold the RBF
Network. This object will hold the long-term memory and a few other basic
items about the network.

The above code calculates exactly how much long-term memory is needed
to hold the coefficients and RBF parameters. The individual RBF functions
are then allocated and pointed to the long-term memory for their parameters.
The RBF parameters are their widths, followed by their center dimensions.

The above code does not actually fill the long-term memory with any val-
ues. Once the network has been allocated, you will typically assign it to ran-
dom values. This will give the RBF network an initial starting point. Training
will refine the long-term memory values into useful values that produce output
closer to the expected outputs. For the iris data, these are the outputs that
define what species the network thinks the inputs correspond to.

Once the RBF network has been set up and the long-term memory has
been set, the network is ready for training. We will call the RBF model and
score how well the initial outputs match up. Of course, we are starting with
random values, so the output will not be good. However, you have to start
somewhere.

7.3 Radial Basis Networks 123

Just as was done for the polynomial, we must calculate the output for
the RBF network. The pseudo code in Listing 7.5 is provided to show the
calculation in this context.

Listing 7.5: Calculating an RBF Network
f unc t i on computeRBFNetwork (

input , // the input v e c t o r
network // the RBF network
)
{

// Firs t , compute the output va l u e s o f each o f the RBFs .
// Add one a d d i t i o n a l RBF output f o r b i a s (a lways s e t
// to one) .
rbfOutput = a l l o c (network . rb f . l ength + 1) ;
// Bias i s a lways va lued 1 .
rbfOutput [rbfOutput . l ength − 1] = 1 ;
for rb f Index from 0 to network . rb f . l ength
{

// weigh t the input
weightedInput = a l l o c (input . l ength) ;
for inputIndex from 0 to input . l ength
{

memoryIndex = network . indexInputWeights
+ (rb f Index ∗ network . inputCount) + inputIndex ;
weightedInput [inputIndex] = input [inputIndex]

∗ network . longTermMemory [memoryIndex] ;
}
// c a l c u l a t e the r b f
rbfOutput [rb f Index] =
network . rb f [rb f Index] . eva luate (weightedInput) ;

}
// Ca l cu l a t e the output , which i s the r e s u l t
// o f the weigh ted r e s u l t o f the RBFs .
r e s u l t = a l l o c (network . outputCount) ;
for outputIndex from 0 to r e s u l t . l ength
{

sum = 0 ;
for rb f Index from 0 to rbfOutput . l ength
{

// Add 1 to r b f l e n g t h f o r b i a s .
memoryIndex = network . indexOutputWeights

+ (outputIndex ∗ (network . rb f . l ength + 1)) + rbf Index ;
sum += rbfOutput [rb f Index]

124 Towards Machine Learning

∗ network . longTermMemory [memoryIndex] ;
}
r e s u l t [outputIndex] = sum ;

}
// f i n a l l y , re turn the r e s u l t .
return r e s u l t ;
}

The above code calculates the final output in several layers. We create a
variable named rbfOutput. As its name implies, it will hold the outputs
from the RBF functions. We loop over all of the RBF functions and calculate
the weighted input to the RBF. The weighted input is simply a vector created
by multiplying each input by that RBF function’s input coefficients. On Figure
7.3, these are the coefficients represented by the vertical group of arrows closest
to the left. As each RBF function is calculated, the rbfOutput vector is filled,
except for the last element of the rbfOutput vector. The last element gets a
1 and functions as the bias node.

Once the rbfOutput vector has been filled, it is multiplied by the output
coefficients. The output coefficients are represented by the vertical column of
arrows closest to the right in Figure 7.3. The calculated output values are
placed into the result vector, and then the result vector is returned to the
calling function.

7.3 Radial Basis Networks 125

7.3.4 Using an RBF Network

Examples for using RBF networks with the iris data set, as well as the XOR
data set, are provided below. These allow you to see how the RBF network
can be trained to learn the expected output for both XOR and iris. First, we
will look at the output from the XOR training with greedy random training.

I t e r a t i o n #999996 , Score =0.013418057671024912 ,
I t e r a t i o n #999997 , Score =0.013418057671024912 ,
I t e r a t i o n #999998 , Score =0.013418057671024912 ,
I t e r a t i o n #999999 , Score =0.013418057671024912 ,
I t e r a t i o n #1000000 , Score =0.013418057671024912 ,
F ina l s c o r e : 0 .013418057671024912
[0 . 0 , 0 . 0] −> [−0.16770550224628078] , I d e a l : [0 . 0]
[1 . 0 , 0 . 0] −> [0 . 9067663351025073] , I d e a l : [1 . 0]
[0 . 0 , 1 . 0] −> [0 . 8703332321473845] , I d e a l : [1 . 0]
[1 . 0 , 1 . 0] −> [0 . 0064115711694006094] , I d e a l : [0 . 0]

Of course, many individual iterations were skipped. It also took a sizeable
number of iterations just to get the score down to 0.01. You can see from the
above output that the actual output does not exactly match the idea. For the
first input of [0,0], we can see that the output should have been [0]; however,
it was -0.16, which is fairly close. The two outputs that should have been [1.0]
are both near 1.0, at 0.906 and 0.87.

Training to the iris data set provides the following output:
I t e r a t i o n #99971 , Score =0.08747428121794937 ,
I t e r a t i o n #99972 , Score =0.08747428121794937 ,
I t e r a t i o n #99973 , Score =0.08747428121794937 ,
I t e r a t i o n #99974 , Score =0.08747428121794937 ,
I t e r a t i o n #99975 , Score =0.08747428121794937 ,
I t e r a t i o n #99976 , Score =0.08747428121794937 ,
I t e r a t i o n #99977 , Score =0.08747428121794937 ,
I t e r a t i o n #99978 , Score =0.08747428121794937 ,
I t e r a t i o n #99979 , Score =0.08747428121794937 ,
I t e r a t i o n #99980 , Score =0.08747428121794937 ,
I t e r a t i o n #99981 , Score =0.08747428121794937 ,
I t e r a t i o n #99982 , Score =0.08747428121794937 ,
I t e r a t i o n #99983 , Score =0.08747428121794937 ,
I t e r a t i o n #99984 , Score =0.08747428121794937 ,
I t e r a t i o n #99985 , Score =0.08747428121794937 ,

126 Towards Machine Learning

I t e r a t i o n #99986 , Score =0.08747428121794937 ,
I t e r a t i o n #99987 , Score =0.08747428121794937 ,
I t e r a t i o n #99988 , Score =0.08747428121794937 ,
I t e r a t i o n #99989 , Score =0.08747428121794937 ,
I t e r a t i o n #99990 , Score =0.08747428121794937 ,
I t e r a t i o n #99991 , Score =0.08747428121794937 ,
I t e r a t i o n #99992 , Score =0.08747428121794937 ,
I t e r a t i o n #99993 , Score =0.08747428121794937 ,
I t e r a t i o n #99994 , Score =0.08747428121794937 ,
I t e r a t i o n #99995 , Score =0.08747428121794937 ,
I t e r a t i o n #99996 , Score =0.08747428121794937 ,
I t e r a t i o n #99997 , Score =0.08747428121794937 ,
I t e r a t i o n #99998 , Score =0.08747428121794937 ,
I t e r a t i o n #99999 , Score =0.08747428121794937 ,
I t e r a t i o n #100000 , Score =0.08747428121794937 ,
F ina l s c o r e : 0 .08747428121794937

The above shows that the training continued until the score reached 0.08. This
allowed the majority of the irises to be correctly classified, and was the result
of using greedy random training and a very large number of iterations. In the
next chapter, we will get even better results in fewer iterations using more
advanced training algorithms.

7.4 Chapter Summary

This chapter introduced you to the fundamentals of training machine learning
algorithms. Once trained, the machine learning algorithm should be able to
produce output close to what you would expect from the input. When input
is provided with the expected output, the algorithm has been provided with a
training set. Training sets are used to train the algorithms.

Most machine learning algorithms keep a long-term memory, which is ad-
justed when the algorithm is trained. This long-term memory is often referred
to as a weight or coefficient, and is typically stored in a vector.

This chapter described the greedy random training algorithm. The greedy
random training algorithm is a very simple training algorithm that assigns
random values to long-term memory. New configurations are tried repeatedly
and the best configuration is kept. This is a very simple training algorithm

7.4 Chapter Summary 127

that is often used as a baseline against which one might benchmark other
algorithms.

We trained two different models in this chapter: a simple polynomial and an
RBF model. The polynomial demonstrated how the greedy random algorithm
can be applied to very simple equations. We were able to approximate the
three coefficients used in the polynomial.

The RBF model is based on radial basis functions, which are symmetric
about a center. The RBF each have multi-dimensional centers and adjustable
width values, although the width of an RBF is consistent across all dimensions.
In this chapter, we used a Gaussian RBF.

The RBF model can be used for classification or regression and uses train-
ing algorithms to modify its long-term memory. The long-term memory for
the RBF model is made up coefficients, RBF widths, and RBF centers. The
RBF model was used to learn the iris data set.

The next chapter will introduce additional optimization algorithms. These
algorithms can be used to adjust the long-term memory vector used by the
RBF network. They can be used on any algorithm that stores its state in a
long-term memory-like vector. The next chapter will describe hill climbing,
simulated annealing and Nelder Mead training algorithms.

129

Chapter 8

Optimization Training

• Hill Climbing

• Simulated Annealing

• Nelder Mead

This chapter will refine the concept of training a machine learning algorithm
to provide more comiteplex approaches than those described in the previous
chapter. There are many different algorithms for training machine learning al-
gorithms. The algorithms presented in this chapter do not require any specific
insight into the long-term memory vector they are attempting to optimize.
This makes them very versatile in terms of what they can train.

This chapter will focus on optimizing continuous vectors, which are those
that are made up of floating point numbers. Chapter 9 will focus on discrete
problems.

8.0.1 Hill Climbing Training

Hill climbing is only marginally more complex to implement than the greedy
random algorithm. One of the main disadvantages of the greedy random al-
gorithm is that there is no refinement. A random vector is chosen for the
long term memory and then immediately replaced if a better random vector

130 Optimization Training

is found. It does not attempt to refine a potentially good solution, but looks
for a better one at random.

Hill climbing works by refining the current vector, which is why the name
is actually very descriptive of the algorithm. Imagine that you are randomly
placed somewhere in the middle of hilly terrain and your goal is to climb to
the highest location possible. You begin by looking at every location that you
could reach in one step and then decide what step you are going to take. You
always decide to take the step that moves you the highest. This process is
repeated until you cannot find a higher step. Once you cannot find a higher
step, the process terminates. With hill climbing, the process terminates at the
nearest high point, which is often called a local maxima.

This process can also be run in reverse, if you seek to minimize. Instead of
selecting the step that leads you to the highest possible position, you would
select the step that leads you to the lowest position. The lowest position
is called the local minima. Local minima and maxima are very important
elements of training.

Using this same analogy, consider if you started out somewhere on the East
Coast of the United States and used hill climbing to find the highest place.
You would probably get stuck somewhere in the Appalachian mountains, as
walking to higher ground when starting on the East Coast would lead you to
these peaks, and once you reached the peaks there would be no way to step
higher. However, they are not the highest ground in the world, or even in the
United States.

This example presumes you are walking in a two dimensional space on the
Earth’s surface. The third dimension, or altitude, does not count because you
cannot directly change your altitude. You cannot fly! Yet, altitude is the
objective. Altitude changes based your movements in the x and y dimensions.
Most machine learning applications will have much more than two dimensions.
However, the principle is still the same–these applications just have more di-
mensions to search.

You will very likely never find a global maximum or minimum for anything
but a very trivial algorithm. Rather, you should hope to find successively
better local minima or maxima. If you find your training to be “stuck,” you
will sometimes have to randomize and start over. You were probably stuck
in a local minima or maxima (that is, stuck in the Appalachians, instead

131

of reaching the Himalayas). Hill climbing is greedy. Hill climbing would be
unwilling to give up its spot on top of the Appalachians to ever find anything
else.

The hill climbing algorithm is implemented in two separate functions. The
first function performs an initialization for the hill climbing algorithm, while
the second function shows an iteration. We begin with Listing 8.1, which
shows one iteration of the hill climbing algorithm. (Russell, 2009)

Listing 8.1: Hill Climbing Algorithm (Initialization)
f unc t i on i n i t H i l l C l i m b (
ltm , // the i n i t i a l l ong term memory
a c c e l e r a t i o n , // the a c c e l e r a t i o n
i n i t i a l V e l o c i t y // the i n i t i a l s t e p s i z e in each dimension

)
{

for i from 0 to ltm . l ength
{

s t e p S i z e [i] = i n i t i a l V e l o c i t y ;
}
candidate [0] = −a c c e l e r a t i o n ;
candidate [1] = −1 / a c c e l e r a t i o n ;
candidate [2] = 0 ;
candidate [3] = 1 / a c c e l e r a t i o n ;
candidate [4] = a c c e l e r a t i o n ;
}

There are several different implementations of the hill climbing algorithm;
this implementation makes use of step size and acceleration. The algorithm
assumes that it will accelerate when it is moving in a direction that is producing
positive results.

Listing 7.3 sets up two vectors for the algorithm to use. The stepSize
vector tracks how big a step the algorithm is able to move in each dimension.
The parameter for this is defined by the term initialVelocity. The candi-
date vector defines five potential moves that the algorithm might take. The
algorithm applies these candidate moves to each dimension. These potential
moves are based on the acceleration parameter. The acceleration and ini-
tialVelocity parameters will affect the efficiency of your training. You will
have to experiment with them in order to gain the best results.

132 Optimization Training

Now that the algorithm has been initialized, we can begin processing iter-
ations. Listing 8.2 shows the iteration function of the hill climbing algorithm.

Listing 8.2: Hill Climbing Algorithm Iteration
f unc t i on i t e r a t e H i l l C l i m b (ltm)
{

l en = ltm . l ength ;
// loop over a l l dimensions and t r y to improve each

for i from 0 to l en
{

best = −1;
// We are t r y i n g to minimize , so s e t the b e s t score to +I n f i n i t .
// Every th ing i s lower than t h a t ! So we d e f a u l t to the f i r s t
// score cons idered .

bes tScore = +I n f i n i t y ;
// Try each o f the cand ida te moves f o r t h i s dimension .

for j from 0 to candidate . l ength
{

// Try the move and score , but back out the move once scored .
ltm [i] = ltm [i] + (s t e p S i z e [i] ∗ candidate [j]) ;
temp = sco r e . c a l c u l a t e S c o r e (ltm) ;
ltm [i] = ltm [i] − (s t e p S i z e [i] ∗ candidate [j]) ;

// Keep t rack o f what dimension (i f any) had the b e s t
// improvement .

i f (temp < bes tScore)
{

bes tScore = temp ;
best = j ;

}
}

// Now t h a t we are done wi th the current dimension , see i f
// any o ther s t ep produced a b e t t e r r e s u l t . I f so , move
// in t h a t d i r e c t i o n .

i f (bes t != −1)
{

ltm [i] = ltm [i] + (s t e p S i z e [i] ∗ candidate [bes t]) ;
s t e p S i z e [i] = s t e p S i z e [i] ∗ candidate [bes t] ;

}
}

}

8.1 Simulated Annealing 133

The above iteration function should be called until calling it does not result in
a move. Once no further movement is possible, the algorithm has reached the
local minima. The above function is designed to minimize the score function.
Adapting it to minimize is relatively simple. The examples provided for this
example on GitHub support both minimization and maximization.

Hill climbing will typically perform better than the greedy random al-
gorithm. However, like the greedy random algorithm, hill climbing is still
typically used as a benchmark algorithm.

The hill climbing implementation shown here optimizes continuous data,
which has an infinite number of values between any two values. A different
algorithm is used for optimization of discrete values, which have a fixed count.
For example, the number of cars in a parking lot is a discreet number–there
are no fractional cars. Chapter 9 will describe how to optimize for discrete
values.

8.1 Simulated Annealing

Scott Kirkpatrick and several other researchers developed simulated annealing
in the mid-1970s. It was originally developed to better optimize the design of
integrated circuit (IC) chips by simulating the process of annealing.

Annealing is the metallurgical process of heating up a solid and then cooling
it slowly until it crystallizes. The atoms of such materials have high-energy
values at very high temperatures. This gives the atoms a great deal of freedom
in their ability to restructure themselves. As the temperature is reduced, the
energy levels of the atoms decrease. If the cooling process is carried out too
quickly–a situation called rapid quenching–many irregularities and defects will
be seen in the crystal structure. Ideally, the temperature should be reduced
slowly to allow a more consistent and stable crystal structure to form, which
will increase the metal’s durability.

Simulated annealing seeks to emulate the annealing process. It begins at a
very high temperature, at which the long term memory values are allowed to
assume a wide range of random values. As the training progresses, the “tem-
perature” is allowed to fall, thus restricting the degree to which the memory
are permitted to vary. This often leads the simulated annealing algorithm to

134 Optimization Training

a better solution, just as a metal achieves a better crystal structure through
the annealing process. (Das, 2005)

8.1.1 Simulated Annealing Applications

Given a specified number of inputs for an arbitrary equation, simulated anneal-
ing can be used to determine what inputs will produce the minimum result for
the equation. In the case of the traveling salesman, this equation is the calcu-
lation of the total distance the salesman must travel. It is the error calculation
or scoring function for a machine-learning algorithm.

When simulated annealing was first introduced, the algorithm was very
popular for integrated circuit (IC) chip design. Most IC chips are composed of
many internal logic gates, which allow the chip to accomplish the tasks that it
was designed to perform. Just as algebraic equations can often be simplified,
so too can IC chip layouts.

Simulated annealing is often used to find an IC chip design that has fewer
logic gates than the original. The result is a chip that generates less heat and
runs faster. The long term memory vector of a machine learning algorithm
provides an excellent vector to optimize. Different memory values are used for
the algorithm until one is found that produces a sufficiently low return from
the error function.

8.1.2 Simulated Annealing Algorithm

The simulated annealing algorithm is similar to hill climbing in that it con-
siders what moves it can make from its current position. These moves are
evaluated randomly. If the randomly chosen move has a better score, than the
current position, then the algorithm moves to the new position. If the new
position is a worse score, then the new position will be accepted with random
probability. This random probability is higher if the temperature is higher, as
summarized in Figure 8.1.

8.1 Simulated Annealing 135

Figure 8.1: Simulated Annealing Flowchart

136 Optimization Training

The ability to take on a worse score is an important distinction. Simula-
tion annealing is not as greedy as the greedy random algorithm. Simulated
annealing will sometimes take one step backwards to potentially take two steps
forward.

The pseudo code to the complete algorithm is provided in Listing 8.3.

Listing 8.3: Simulated Annealing Pseudo Code
f unc t i on i t e r a t i o n (
ltm , // the long term memory we are t r y i n g to op t imize
c y c l e s // the number o f c y c l e s per i t e r a t i o n

)
{

l en = ltm . l ength ;
k++;
currentTemperature = coo l ingSchedu l e () ;
for c y c l e from 0 to c y c l e s
{

// backup current s t a t e
o ldSta t e = ltm . c l one () ;

// randomize the method
performRandomize (ltm) ;

// did we improve i t ? Only keep the new method
// i f i t improved (greedy) .

t r i a l E r r o r = c a l c u l a t e S c o r e (ltm) ;
// was t h i s i t e r a t i o n an improvement? I f so , a lways keep .

keep = fa l se ;
i f t r i a l E r r o r < cur rentErro r
{

keep = true ;
}
else
{

p = c a l c P r o b a b i l i t y (
currentError ,
t r i a l E r r o r ,
currentTemperature) ;

i f (p > rand ())
{

keep = true ;
}

}
// shou ld we keep t h i s new p o s i t i o n ?

8.1 Simulated Annealing 137

i f (keep)
{

cur rentErro r = t r i a l E r r o r ;
// b e t t e r than g l o b a l e r ror

i f (t r i a l E r r o r < g loba lBes tEr ro r)
{

g loba lBes tEr ro r = t r i a l E r r o r ;
o ldSta t e = ltm . c l one () ;
g l oba lBes t = ltm . c l one () ;

}
}
else
{

ltm = o ldSta t e . c l one () ;
}
}
}

The above code performs one iteration of the simulated annealing algorithm.
The iteration begins by obtaining the current temperature from the cooling
schedule. This temperature will remain the same for the entire iteration. The
iteration will execute a defined number of cycles. For each cycle, the algorithm
will attempt to move from the current position. Each cycle will take place at
the same temperature.

For each cycle, a random position is chosen. This random position is based
on the current position. Because of this, only close positions will be considered.
If the new position has a better score than the current position, then the
algorithm moves to the new position. Otherwise, it calculates a probability
based on the previous error, the current error, and the current temperature.
The exact process used to calculate the probability will be described later in
this chapter.

At the end of the iteration, the algorithm checks to see if it has surpassed
any previous best solutions. In this regard, the algorithm is ultimately some-
what “greedy” in that it always keeps the best solution that it has found so
far.

138 Optimization Training

8.1.3 Cooling Schedule

The cooling schedule defines how quickly the temperature will fall during the
simulated annealing iterations. The temperature determines the likelihood
that an algorithm will move to a new position with a worse score. It is best
if this probability is higher in the beginning phases of the training. Once the
training has run for a longer time, it is best if the probability of moving to
a worse position is much less. This allows the algorithm to narrow in on a
more optimal solution. The following equation is used to calculate the cooling
schedule.

T (k) = Tinit
Tfinal

Tinit

k
kmax

(8.1)

The above equation calculates the temperature for iteration number k. There
are a few things to keep in mind when setting the equation.

• The equation must also be provided with the initial and final tempera-
tures, as well as the max number of iterations.

• It is not necessary that you use this equation exactly.

• It is important that the temperature decrease as training progresses.

• Do not choose zero as the final temperature in the above equation. It
is okay to choose something close to zero, however. Because the above
equation multiplies by the final temperature, having a final temperature
of zero will quickly take the current temperature to zero.

You can see this cooling schedule in Figure 8.2.

8.1 Simulated Annealing 139

Figure 8.2: Cooling from 1,000 to 10,500 Iterations

The temperature is used to determine the probability that the algorithm
will accept an inferior score.

8.1.4 Annealing Probability

Simulated annealing always attempts to move the algorithm to random loca-
tions. Sometimes these random locations will not produce as good a score as
the previous location. A completely greedy algorithm would never consider a
new position that produces a worse score. However, such an outlook can be
counterproductive. You might have to go through a few valleys before you
find the top of the highest mountain!

We will compute the probability that the simulated annealing algorithm
will accept a worse score as a function of the following three inputs:

• Current error

• Previous error

• Current temperature

Equation 8.2 makes use of all of these.

P (e, e′, T) = exp(−(e′ − e)/T) (8.2)

140 Optimization Training

The probability function accepts the previous error, current error, and current
temperature. The probability function returns a number between 0 and 1. A
value of one means a 100% likelihood of selecting a worse score, and a value
of zero means there is no likelihood of selecting a worse score. These numbers
can easily be compared against random numbers. If the random number is less
than the probability, then we will accept the solution with an inferior score.

Equation 8.2 returns higher probabilities for higher temperatures. How-
ever, the increase in error is also considered. The larger the increase in error,
the new position is less likely to be accepted.

Simulated annealing can also be used to train the RBF networks introduced
in the last chapter. It allows for more efficient learning than could be achieved
with the hill climbing and greedy random algorithms alone.

8.2 Nelder Mead

The Nelder Mead algorithm was proposed by John Nelder and Roger Mead
(Nelder, 1965). It is an optimization algorithm that can be used to optimize
vectors to a scoring function. The Nelder Mead method is sometimes called the
downhill simplex method or amoeba method. Nelder Mead is relatively easy
to visualize and understand. It is also a generally effective solutions finder. It
thus provides a great introduction to advanced training algorithms.

Nelder Mead works by constructing a simplex. A simplex is a geometric
shape that has a number of vertices equal to N+1, where N is the number of
dimensions in the problem. A vertex is a point in space. These vertices become
the corners of a geometric shape called a simplex. Lines are drawn to form
new shapes that connect vertices, or corners. If we were optimizing a vector
with two dimensions, we would have a simplex in the shape of a triangle.

The simplex is simply a list of potential solutions. The algorithm always
keeps N+1 potential solutions, and so the simplex will change its shape as
training progresses. Once the training has reached an advanced state, the
simplex has most become very small. At this point, we can find the solution
by selecting the vertex with the best score.

8.2 Nelder Mead 141

The Nelder Mead algorithm can also be used to train the RBF networks
introduced in the last chapter. It is able to converge to a low error faster than
greedy random, hill climbing, and often simulated annealing algorithms.

Nelder Mead always begins with an initial guess as to the solution vector.
If you cannot make an educated guess, then choose a random vector. If you
previously trained with another algorithm, you can use your result from the
last algorithm as the initial guess, and Nelder Mead will further refine the
solution. This also works if you want to refine a previous Nelder Mead solution.

The initial solution becomes one of the vertices of the starting simplex.
If we have two dimensions, then we need to generate two additional vertices.
The simplex is always constructed of N+1 vertices, where N is the number of
dimensions. It is important that you not confuse dimension with vertex. A
vertex is a point made up of one or more dimensions.

We will now consider Nelder Mead for two dimensions. The following would
be true in this case.

• Dimensions = N = 2

• Vertices = N+1 = 3 (a triangle)

• Simplex: A collection of 3 vertices, each having 2 dimensions (resulting
in the shape of a triangle)

The first step for Nelder Mead is to generate the initial simplex. This simplex
will be refined as the iterations progress. The initial simplex always takes the
initial solution vector as one of the starting vertices. The other N vertices are
created by moving one of the N dimensions by a set amount. Typically, the
sides of the initial simplex are set to be of the same length.

142 Optimization Training

Figure 8.3 shows a visualization of a three vertex simplex in two dimensions.

Figure 8.3: Nelder Mead Simplex

The above graph is a topology map. I sometimes like to think of the vertices
in the above figure as members of a search party covering rugged terrain. All
are looking for the optimal point on the map. The optimal point might be
a high or a low, depending on how you define a good score. In a nutshell,
Nelder Mead works by moving the searcher who is in the worst position to a
new location that is based on the better positions of the other two.

The minimum that the depicted simplex is moving toward is in the large
oval-like area in the top-right. The vertices are labeled X, although they
are not to be confused with x and y dimensions. The three X vertices are
labeled h, s, and l. They are the worst, second worst, and the best vertices,
respectively.

8.2 Nelder Mead 143

Iterations of Nelder Mead consist of the following steps:

• Step 1. Find the worst, second worst, and best points of the vertex.

• Step 2. Reflect the worst to a better point through the best side.

• Step 3. If the reflection is successful, expand.

• Step 4. If the reflection it unsuccessful, contract.

8.2.1 Reflection

Reflection is the first step in the Nelder Mead algorithm. The worst vertex will
be the one considering a move. Figure 8.4 shows the basic setup for moving
by reflection.

Figure 8.4: Reflection

The current simplex is depicted by the solid lines, and the worst position
is Xh. To reflect Xh, the average is taken between Xs and Xl. This gives a
center, which is labeled as c in the figure above. If you consider the search

144 Optimization Training

party example, the farthest off searcher (Xh) looks in the direction of the
other two and points at the center point (the average) between them as the
best place to go. Because the other two are in better locations than him, the
searcher must assume that anything behind him is also worse. He must move
toward the other two, so he visualizes a point well beyond them, at point
Xr. He visualizes a point well beyond because he aspires to become the best
searcher!

After selecting the point at Xr, the point is now evaluated. Was it actually
a better location? If it was, then we continue by implementing expansion. If
not, then we continue by implementing contraction.

8.2.2 Expansion

Continuing the example from before, the Xh searcher has seen that he could
improve his ranking by moving to Xr. Now he gets a little greedy, and wants
to move farther. If we are climbing down a valley, then going to a farther
point will probably get us to the optimal point faster. Figure 8.5 depicts this
scenario.

Figure 8.5: Expansion

The searcher at Xh evaluated the spot at Xr. It was an improvement. So

8.2 Nelder Mead 145

he became greedy and jumped right to Xe without checking Xe. This is okay,
since even if he overshoots, he was at the worst spot to begin with.

This ends the iteration. The next iteration re-evaluates all of the vertices
and determines which is now the farthest off.

8.2.3 Contraction

Contraction occurs when the reflection point does not improve the rank of the
worst point. Figure 8.6 shows the contraction scenario.

Figure 8.6: Contraction

Continuing with the searcher analogy, the worst searcher at Xh had dreams
of moving to Xr and getting a better rank. However, if the position at Xr had
an even worse score, all we can do is move closer to the other two searchers. We
still point toward the center of the two other searchers but, since our hopes
have been dashed, we do not move beyond them. We move somewhere in
the middle of the simplex, to location Xc. Hopefully this improves our rank.

146 Optimization Training

Either way, the iteration is now done. The next iteration will rank the vertices
again and continue.

8.3 Finishing the Nelder Mead Algorithm 147

8.3 Finishing the Nelder Mead Algorithm

It is important to know when to terminate an iterative algorithm such as
Nelder Mead. This algorithm typically terminates based on the following three
criteria.

• A maximum number of iterations is exceeded.

• The score is good enough.

• The vertices have become “close enough” to each other.

Once the algorithm completes, we consider the best vertex to be the solution.
If the vertices have become close together, another option is to restart the
algorithm by building a new simplex based on the best vertex. The search can
then begin anew.

Nelder Mead is relatively efficient in that only one of the vertices needs
to be reevaluated with each iteration. In machine learning, most computer
processing time is spent evaluating against the training data. With Nelder
Mead, it is only necessary to reevaluate one vertex because only the worst
vertex moves.

In addition to reflection, contraction and expansion, some older implemen-
tations of Nelder Mead also made use of a shrink step. Later research found
the shrink step to be unnecessary, however, and most modern implementations
of Nelder Mead do not include it.

Unlike greedy random, simulated annealing and hill climbing, Nelder Mead
performs a coordinated search from multiple locations at once. Such coordi-
nated searches are very common in even more advanced algorithms. Particle
Swarm Optimization (PSO) and Genetic Algorithms both use many multiple
coordinated solutions.

148 Optimization Training

8.4 Chapter Summary

This chapter introduced you to three optimization algorithms that can be used
for training. These algorithms are designed to optimize individual values in a
vector to obtain a better score for the model being trained. This vector is the
long term memory for any of the machine learning algorithms we have seen so
far.

Hill climbing is a simple search optimization algorithm. It starts at a vector
location and evaluates moves that can be made from that vector. Whatever
move results in the largest improvement to the score is taken. Hill climbing
is very susceptible to local minima and maxima. Once hill climbing reaches a
point where it can no longer find a better solution, the algorithm is complete.

Simulated annealing works somewhat like hill climbing, except that sim-
ulated annealing is sometimes willing to move to a position that has a lower
score than the current position. Nelder Mead is another training algorithm
that can be used to optimize a vector.

This chapter focused on continuous optimization algorithms. A continuous
optimization algorithm deals primarily with floating point numbers. However,
some optimization algorithms may be used on discrete data. The next chapter
will demonstrate the optimization of discrete data.

8.4 Chapter Summary 149

151

Chapter 9

Discrete Optimization

• Discrete vs. Continuous

• The Knapsack Problem

• The Traveling Salesman Problem

In the last chapter, we saw that simulated annealing could be used to optimize
the long-term memory of machine-learning algorithms. The optimization oc-
curred against the long-term memory vector of a machine-learning algorithm.
This vector was composed of continuous floating-point numbers. With con-
tinuous vectors, there is an infinite amount of additional numbers between
two consecutive whole numbers. This is continuous data. Not all data is
continuous.

This chapter will focus on using simulated annealing to analyze discrete
problems, particularly focusing on the traveling salesman problem and the
knapsack problem. The traveling salesman problem is discrete because it seeks
to find the most optimal route to visit a fixed number of cities. The knapsack
problem is discrete because it seeks to find an optimal set of items to put into
a finite knapsack. Discrete data always deals with a finite number of items.

152 Discrete Optimization

9.1 The Traveling Salesman Problem

Simulated annealing is commonly used to solve the traveling salesman problem
(TSP), because the TSP is an NP-hard problem that generally cannot be
solved by traditional iterative algorithms. TSP is one of most famous computer
science problems. We will now see how to apply simulated annealing to it.

9.1.1 Understanding the Traveling Salesman Problem

The traveling salesman problem involves determining the shortest route for a
“traveling salesman” who must visit a certain number of cities. The salesman
is allowed to begin and end at any city, but must visit each city once and only
once. There are several variants of the TSP, some of which allow multiple
visitations to cities or assign different values to different cities. The TSP we
will evaluate in this chapter simply seeks the shortest route to visit each city
once. The TSP problem and shortest route used in this chapter are shown in
Figure 9.1.

Figure 9.1: The Traveling Salesman

It may seem like finding the shortest route would be an easy task for a
normal iterative program. However, as the number of cities increases, the
number of possible combinations increases drastically. If there are one or two
cities, only one route is possible. If there are three cities, the possible routes
increase to six, however. The follow list shows how quickly the number of
paths grow!

9.1 The Traveling Salesman Problem 153

1 c i t y has 1 path
2 c i t i e s have 1 path
3 c i t i e s have 6 paths
4 c i t i e s have 24 paths
5 c i t i e s have 120 paths
6 c i t i e s have 720 paths
7 c i t i e s have 5 ,040 paths
8 c i t i e s have 40 ,320 paths
9 c i t i e s have 362 ,880 paths
10 c i t i e s have 3 ,628 ,800 paths
11 c i t i e s have 39 ,916 ,800 paths
12 c i t i e s have 479 ,001 ,600 paths
13 c i t i e s have 6 ,227 ,020 ,800 paths
. . .
50 c i t i e s have 3 .041 ∗ 10ˆ64 paths

The formula used to collect data for the above table is the factorial. The
number of cities, n, is calculated using the factorial operator (!). The factorial
of some arbitrary value n is given by n * (n - 1) * (n - 2) * ... * 3 * 2 *
1. These values become incredibly large when a program must do a “brute
force” search. However, a simulated annealing algorithm such as the sample
program examined in the next section finds the solution to a 50-city problem
in a matter of minutes. (Behzad, 2002)

9.1.2 Implementing the Traveling Salesman Problem

So far, we have discussed the basic principles of continuous simulated annealing
algorithms in previous chapters. The discrete version of simulated annealing
is not too different from the continuous version that we saw in Chapter 8. The
flow chart remains the same as what we saw in Figure 8.1. The difference is
in how we move from the current position.

To conduct continuous simulated annealing, we would add a random value
to one or more dimensions to move from the current position. In discrete
simulated annealing, on the other hand, we need to be a little more creative.
In the context of the TSP, each solution is a path through the cities. Our
current position is this path. Moving to a new “position” means choosing a
path similar to the current path.

154 Discrete Optimization

It is important not to confuse the term “position” with city location. In
this context, it does not refer to any particular “position” within the map of
the cities. Rather, it describes one path among all possible paths to navigate
that particular map. To move from one path to another, we simply flip the
order of two cities in the original path. Flipping two cities ensures that we do
not introduce a duplicate city.

To use simulated annealing, you must first generate an initial random solu-
tion. For TSP, this is a random list of the cities, with no duplicates. Then you
must provide a means of creating a new solution through the implementation
of a slight, randomized change For TSP, we simply flip the order in which the
path visits two cities. This is implemented by choosing two random indexes
(that are not the same) and exchanging their locations on the list.

There are three things that you must provide to any simulated annealing
algorithm implementation.

• A scoring function to evaluate each position.

• A means of generating an initial random potential solution.

• A means of moving to a new random position based on your current
position.

This is no different from continuous simulated annealing. The primary dif-
ference between the continuous and discrete annealing is in how these three
aspects are implemented. For the traveling salesman problem, the score is sim-
ply the distance traveled, which is scored more highly as the distance travelled
minimizes. The initial solution is the generation of a random, non-repeating
list of cities. Movement to the new random position is implemented by flipping
two cities.

9.2 Circular TSP 155

9.2 Circular TSP

How can we evaluate an algorithms effectiveness with an NP-Hard problem?
For an NP-Hard problem we often do not know the actual correct answer. This
can make it very difficult to know exactly how close the algorithm has come to
an optimal solution. There is a way to test the simulated annealing algorithm
on a TSP, however. We can arrange the cities in a circle. If the cities are
arranged in a circle, or oval, then the optimal path should run the perimeter
of the shape. Figure 9.2 shows simulated annealing trying to optimize a path
through cities arranged in an oval.

Figure 9.2: Annealing an Oval Path

The annealing algorithm above came close to an optimal solution. However,
it is not perfect. This is okay. You can rarely find a global optimum in
any situation. It is only because we have insight into geometry that we can
immediately spot that this path is not perfect. If you have insight into a
problem that can help to solve it, then by all means, use it! AI is most useful
when you have no other way to solve a problem.

156 Discrete Optimization

9.3 The Knapsack Problem

The knapsack problem is a combinational optimization problem that has been
around as early as the late 1800s. The origin of the name is unknown, although
mathematician Tobias Dantzig suggested that the knapsack problem may have
originated as a folk story long before a formal mathematical problem was set
down.

9.3.1 Understanding the Knapsack Problem

The knapsack problem describes the dilemma of a burglar inside of a store.
He is surrounded by merchandise, but he only has one knapsack. What should
the burglar take to maximize his profit? The combination of items must fit
inside his knapsack.

In fact, anyone who has packed for a trip has faced a variant of the knapsack
problem. Figure 9.3 shows a knapsack and some items one might want for an
overnight camping trip.

9.3 The Knapsack Problem 157

Figure 9.3: The Knapsack Problem

The knapsack problem is a discrete problem. You can only select a fixed
number of items and you are typically allowed to choose only zero or one of
each item. This is the most common type of knapsack problem and it is called
a 0-1 problem. Other variants allow for the selection of more than one of
each individual item. The items are typically provided to the problem with
weights and profit scores. You might wonder about volume in the knapsack
problem. By convention, the knapsack problem does not consider volume.
The maximum weight that will fit in the knapsack is also specified. (Pisinger,
2003)

158 Discrete Optimization

9.3.2 Implementing the Knapsack Problem

Discrete simulated annealing can easily be applied to the knapsack problem.
It is very important to think about how you might want to represent this
problem. In the context of the knapsack problem, a solution is a list of items
that does not exceed the weight limit imposed by the knapsack.

The best way to represent a potential knapsack solution is with a vector
that has dimensions equal to the number of unique items that can be added to
the knapsack. Each item’s element in this vector will contain a whole number
representing the count of that item taken. For example, Figure 9.3 describes
the potential for bringing the following items.
Cof f ee thermos (weight =5, p r o f i t =1) : fa l se
Baseba l l cap (weight =1, p r o f i t =1) : true
Blanket (weight =3, p r o f i t =10) : true
Bott l e o f water (weight =2, p r o f i t =25) : true

Out knapsack can hold a max weight of 7. The coffee thermos has been
deemed unworthy, so that value is false. The rest has been determined to be
profitable, so their values are true. The resulting weight is 6, which is below
the maximum weight of 7. Adding the coffee would put us over the weight,
while replacing anything else with the coffee would reduce our profit.

We now have a way to represent the solution. We must provide certain
things to the simulated annealing algorithm.

• A scoring function to evaluate each position (set of items).

• A means of generating an initial random potential solution.

• A means of moving to a new random position based on the current
position.

Simulated annealing always solves a minimization problem. This aspect must
be considered during the creation of the scoring function. We would like
to tie the maximum score to the profit generated by each item we take. The
theoretical maximum profit is the sum of the profit of all items. If all the items
fit in the knapsack, the theoretical maximum profit is attainable–otherwise, it
is not.

9.3 The Knapsack Problem 159

We will use the difference between our current profit and the theoretical
maximum as the best score. It is unlikely that we will ever get the optimal
score of zero, which would indicate that every item can fit in the knapsack. If
they can all fit, it hardly seems worthwhile to consider the problem. Rather,
we instead attempt to approach perfection.

Another important feature to consider for the scoring function is what
happens if the knapsack’s maximum weight is exceeded in the solution. Ideally,
our randomization would never let this happen. However, it does not hurt to
check the maximum weight in the scoring function as well. If the knapsack’s
maximum weight is exceeded, then the score should be pushed out to a very
large value. This will cause any invalid knapsack configuration to be discarded
by the algorithm.

To meet the second provision to simulated annealing, we need a way to
initialize a random solution. To initialize the first solution, start with an
empty knapsack and add items to it one at a time. Once we add an item that
exceeds the maximum weight of the knapsack, remove that item and consider
the knapsack initialized.

To meet the third provision to simulated annealing, we need to generate
a new position based on the current position. To randomize to a new state,
add a new item that is not already in the knapsack. If this sets us over the
maximum weight, choose a random item and remove it. Continue to remove
items until the knapsack is below the maximum weight. The result will be the
new position.

160 Discrete Optimization

9.4 Chapter Summary

This chapter looked at how we might apply simulated annealing to a discrete
problem. Discrete solutions are usually members of a finite set. For example,
whole numbers in a range are discreet, as are colors.

There are very few differences between a continuous simulated annealing
algorithm and a discrete one. Both require three components:

• A scoring function.

• A way to generate an initial random solution.

• A means of slightly changing a solution as we iterate through potential
solutions.

The traveling salesman problem was introduced as a discrete problem. The
traveling salesman seeks the shortest possible path through a number of cities.
Brute force cannot be applied to this problem, as there are too many pos-
sibilities. Simulating annealing can be used to find an acceptable solution,
however. The end result from simulated annealing may not be the global
optimum, however, as finding the best solution is typically NP-Hard.

The knapsack problem is also discrete. This problem requires you to choose
from a list of items that have varying weights and profit values to pack into
a knapsack that can only hold so much weight. The goal is to maximize the
profit for the weight our knapsack can hold.

The next chapter will conclude this book by introducing linear regression
and general linear models. These are two very common statistical models that
can be used with machine learning. Both linear regression and general linear
models are valuable when used alone or as part of a larger algorithm.

9.4 Chapter Summary 161

163

Chapter 10

Linear Regression

• Linear Regression

• Generalized Linear Model (GLM)

• Link Function

This chapter will explore linear regression and generalized linear models (GLM).
These are related statistical models that allow relationships to be established
between input and output vectors. The input vector can contain multiple
values, while the output vector must be a single value.

Linear regression allows for simple linear relationships to be modeled be-
tween the input and output vectors. These relationships can be used for some
to learn basic problems, so long as the relationships are linear. Generalized
linear models (GLM) add a link function to regular regression that greatly ex-
pands what can be modeled, as the relationship no longer needs to be linear.
(Pedhazur, 1982)

164 Linear Regression

10.1 Linear Regression

Linear regression attempts to map the input vector to the output vector with
a relatively simple linear model. If you just have two variables, x and y, you
can write a linear function from them. Equation 10.1 shows such an equation.

Y = mx+ b (10.1)
Here m is the slope and b is the x-intercept. This function is called linear
because on a graph it looks like a straight line. A curve in the line would
indicate that the function is not linear.

The following equation gives values to the unknowns in Equation 10.1.

Y = 0.5x+ 2 (10.2)
The slope is 0.5 and the x-intercept is 2. Figure 10.1 shows the graph of this
equation.

Figure 10.1: Graph of Y = 0.5x + 2

Equation 10.1 is a simple, single variable linear regression model. A linear
regression dealing with only a single variable is called univariate. A very
common example used to demonstrate univariate regressions is the relationship
of shoe size to a person’s height. This regression would accept a single input
of the person’s height and output their shoe size, or vice versa. Training such

10.1 Linear Regression 165

a model would involve finding the slope and y-intercept that describes the
relationship between height and shoe size.

The above graph shows that the function is linear. The function has a
positive slope, which is evident in the line’s northeast to southwest orientation.
The slope is also only 0.5, so the line is not greatly inclined. Because the y-
intercept is 2, we know that when x is zero, y will be 2.

Many problems consist of several inputs, however. Such models are called
multivariate. A multivariate linear regression looks very similar to a univari-
ate. The only difference is that you have one term for each of the inputs.
Additionally, you still have the y-intercept. Equation 10.2 shows the general
form of a multivariate linear regression.

yi = β1xi1 + · · ·+ βpxip + εi = xT
i β + εi, i = 1, . . . , n (10.3)

In the above equation, the x variables represent the input vector. There will
be a total of n inputs. You should notice that each of the inputs is multiplied
by a corresponding beta value. Finally, an epsilon value is added. Epsilon
represents the y-intercept. Despite all the additional terms, the above equation
is still linear. Any such model would produce a straight line graph.

We will focus on the multivariate linear regression. Univariate linear re-
gression is really just a special case of multivariate regression. Thus, it is not
worth learning to do two separate algorithms.

The beta and epsilon values are coefficients. Even epsilon is a coefficient
of one. These coefficients make up the long-term memory for this model. We
could use any of the learning algorithms presented in this book to find decent
coefficients that produce the desired outputs from the inputs in your training
set.

10.1.1 Least Squares Fitting

Training is the process of determining what coefficients will most closely match
your training set. Once you have your coefficients, it is easy to calculate the
output of a linear regression. It is unlikely that coefficients will be fit enough
to allow the model to represent every training case. However, training will
attempt to minimize the overall error of your training set elements.

166 Linear Regression

Most documentation on linear regression uses the word “fitting”to describe
the process of training. Both terms really mean the same thing. As stated in
the previous section, you could use any of the training algorithms in this book
to fit proper coefficients to the model. The training algorithms presented so
far are all general-purpose algorithms. They do not specify any requirements
on the long-term memory (in this case, coefficients) that they are trying to fit.
We will now see a training algorithm designed specifically for linear regression.

Often, mathematical solutions will produce a better solution faster than
general algorithms. If you do not know of an appropriate mathematical so-
lution, then by all means use a general algorithm. The only real downside
is that the training time will likely be longer. I’ve occasionally implemented
a general solution only to have a more mathematically advanced friend say,
“Oh interesting, you decided not to go with the [insert advanced mathemat-
ical technique here] approach.” Though, I am always quite glad to have such
shortcuts shown to me. Math is an infinite loop of learning.

Now we will look at one such mathematical solution in order to use least
squares fitting. This training algorithm will not work on any of the previ-
ous models or machine learning algorithms presented in this book. The only
algorithm in this book with which you can use least squares fitting is linear
regression, as least square fitting is not a general-purpose algorithm.

To fit using least squares, we must create two matrixes. These matrixes
will be named matrixX and matrixY. Both matrixes will have a number
of rows equal to the number of training set elements. The matrix matrixX
will hold all of the inputs from the training set. Thus, it will have a number
of columns equal to the input count plus 1. Each input in the matrix should
have a one concatenated to it. This allows the y-intercept to be accounted for.
The matrix matrixY will hold all of the ideal outputs from the training set.
For linear regression, there should be only one output, so the column count
for matrixY will always be 1.

Using these two matrixes, we can get a good fit of coefficients for the linear
regression. We will use a linear algebra technique called matrix decomposition,
of which there are many different kinds. Matrix decomposition is essentially
a factorization. Factoring the matrix separates the matrix into two matrixes
that, when multiplied together, produce the original matrix.

10.1 Linear Regression 167

For sum of squares, we will not use the two factor matrixes, but rather use
the QR decomposition to solve this system of equations. QR decomposition is
commonly used in AI. It is the main component of the least squares training
algorithm. (Barlow, 1993)

10.1.2 Least Squares Fitting Example

Let’s create a linear regression model that will convert Fahrenheit tempera-
tures into Celsius using least squares fitting. We will begin with some training
data.
0 −> 32
100 −> 212

The above data simply states that 0 degrees Celsius is equal to 32 degrees
Fahrenheit. Likewise, 100 degrees Celsius is 212 degrees Fahrenheit. We would
like to calculate the slope and y-intercept for a linear equation that will produce
the desired output shown above.

We must generate the matrixX and matrixY matrixes. First, we generate
matrixX. As previously stated, this is essentially the input values with a 1
concatenated. The 1 represents the y-intercept. matrixX is described below.

[0 . 0 , 1 . 0]
[1 0 0 . 0 , 1 . 0]

Next, we construct matrixY, which is a matrix of ideal outputs.
[3 2 . 0]
[2 1 2 . 0]

The next step is to solve the matrix, using QR decomposition, and obtain the
coefficients. I am not going to show you the internals of a QR decomposition,
as this is a “wheel” I’ve never tried to reinvent. I always use a linear algebra
package to perform this operation. There are quite a few linear algebra pack-
ages to choose from in most programming languages. Some are very efficient.
You might choose to use a natively implemented linear algebra package or
GPU based linear algebra package. BLAS is a very common linear algebra

168 Linear Regression

package, and there is a version of BLAS for CUDA GPUs called CUBLAS.
GPUs can often perform matrix operations considerably faster than CPUs.

We will solve matrixX for matrixY using QR. This will return the co-
efficients that must be applied to matrixX to produce matrixY. We will
only get one set of coefficients, despite the fact that we have two rows. These
coefficients will produce the best results possible over all rows. This results in
the following matrix:
[1 . 8]
[3 2 . 0]

The matrix describes a coefficient and the y-intercept. The y-intercept is
always given by the one that we concatenated to every input. As previously
stated, the y-intercept has a coefficient of 1. Therefore, the following linear
model can be used to convert Celsius to Fahrenheit:
f = (c ∗1 . 8) +32

This matches the conversion formulas found in Wikipedia and other sources.
There are no iterations with the least squares fit. It is not necessary to

perform multiple iterations of least squares fitting, unlike other iteration-based
algorithms seen in previous chapters.

10.1 Linear Regression 169

10.1.3 Anscombe’s Quartet

Linear regression requires that the relationship between inputs and outputs be
linear, but it can be problematic to force a line from data points. Anscombe’s
Quartet is a special data set that points out some issues in linear regression.
Figure 10.2 shows Anscombe’s Quartet. (Anscombe, 1973)

Figure 10.2: Anscombe’s Quartet

The above figure shows four different data sets. The points in each of
these four look clearly different. All four of these produce the exact same
linear regression coefficients. The line drawn through the points represents
the linear regression. That these four all produce the same linear regression
indicates some of the flaws in the system.

The top-left plot shows a linear regression line that does a pretty good job
approximating the relationship between the points. However, the top-right
data set is not at all linear. The bottom two show the effect that outliers
can have on a model. An outlier occurs when a small number of points are
completely out of sequence with the others.

170 Linear Regression

10.1.4 Abalone Data Set

An example is provided for fitting a linear regression to the Abalone Data
Set, which contains observations of abalone sea snails. The data set can be
obtained from the following URL.

http://archive.ics.uci.edu/ml/datasets/Abalone
The set fits a linear regression to predict the number of rings in the abalone

using a number of other observations. Much like a tree, the ring count of an
abalone indicates its age. The output from this set is as follows. (Nash, 1994)

[0 . 0 , 1 . 0 , 0 . 0 , 0 . 455 , 0 . 365 , 0 . 095 , 0 . 514 , 0 .2245 , 0 . 101 , 0 . 1 5]
−> [9 . 1 2 79 29 68 75] , I d e a l : [1 5 . 0]

[0 . 0 , 1 . 0 , 0 . 0 , 0 . 35 , 0 . 265 , 0 . 09 , 0 .2255 , 0 .0995 , 0 .0485 , 0 . 0 7]
−> [7 . 7 5634765625] , I d e a l : [7 . 0]

[1 . 0 , 0 . 0 , 0 . 0 , 0 . 53 , 0 . 42 , 0 . 135 , 0 . 677 , 0 .2565 , 0 .1415 , 0 . 2 1] −>
[1 1 . 0 7 8 1 2 5] , I d e a l : [9 . 0]

[0 . 0 , 1 . 0 , 0 . 0 , 0 . 44 , 0 . 365 , 0 . 125 , 0 . 516 , 0 .2155 , 0 . 114 , 0 . 1 5 5]
−> [9 . 5 6 15 23 43 75] , I d e a l : [1 0 . 0]

[0 . 0 , 0 . 0 , 1 . 0 , 0 . 33 , 0 . 255 , 0 . 08 , 0 . 205 , 0 .0895 , 0 .0395 , 0 . 0 5 5]
−> [6 . 6 9970703125] , I d e a l : [7 . 0]

[0 . 0 , 0 . 0 , 1 . 0 , 0 . 425 , 0 . 3 , 0 . 095 , 0 .3515 , 0 . 141 , 0 .0775 , 0 . 1 2] −>
[7 . 7 8 02 73 43 75] , I d e a l : [8 . 0]

[1 . 0 , 0 . 0 , 0 . 0 , 0 . 53 , 0 . 415 , 0 . 15 , 0 .7775 , 0 . 237 , 0 .1415 , 0 . 3 3] −>
[1 3 . 52197265625] , I d e a l : [2 0 . 0]

It provides the ring count predicted for each abalone, as well as the ideal ring
count according to the training data.

10.2 Generalized Linear Models

Generalized linear models (GLM) are based on the linear regression models
discussed above. They make use of a link function to further abstract the
output from the GLM. There are a variety of link functions that can be used
with GLMs. Because GLMs are trained with a calculus-based training algo-
rithm, the link function must have a derivative. The use of derivatives for
GLM training will be described in the next section.

http://archive.ics.uci.edu/ml/datasets/Abalone

10.2 Generalized Linear Models 171

The equation for a GLM is very similar to that for linear regression. The
primary difference is that a GLM adds a link function.

The equation for a GLM is shown in Equation 10.3.

yi = g(β1xi1 + · · ·+ βpxip + εi = xT
i β + εi), i = 1, . . . , n (10.4)

You may have noticed that Equation 10.3 is very similar to Equation 10.2.
This is because the GLM is essentially the return value of a linear regression
passed to the link function. In the above equation, the link function is given
by g(). The input vector is x, while the output is y. The beta values make
up the coefficients and the epsilon value is the y-intercept, which is the same
as with linear regression. The only addition is the link function.

There are many different link functions to choose from. One of the most
common is the logistic, or logit, function. A GLM that uses the logit function is
typically called a logistic regression model. The output of a logistic regression
is always considered to be one of two values.

If you would like to model something with two categories, then you should
consider using a logistic regression model. Logistic regression chooses between
two options based on the input. This might be true/false, good/bad, buy/sell,
etc. If you need to choose between more than two options, you could use the
RBF networks presented in this book.

The logit function is sometimes called a sigmoid function. It is shown in
Figure 10.3.

172 Linear Regression

Figure 10.3: The Logistic Function

The logistic function is able to scale the output from the linear regression.
It has several very important properties:

• g(-Infinity) = 0

• g(Infinity) = 1

• g(0) = 1/2

• g(-x) = 1 - g(x)

• if x > y then g(x) > g(y)

The output of the logit will never be less than zero or more than one. There-
fore, 0 is typically mapped to one of the categories that the GLM aims to
predict, while 1 is mapped to the other category. A value of 0 results in a half,
which is exactly between 0 and 1.

The sigmoid function is also monotonic. Monotonic refers to the fact that
the function is either consistently increasing or decreasing. Monotonic func-
tions do not reverse that direction.

10.2 Generalized Linear Models 173

10.2.1 Reweight Least Squares Training

GLMs can be trained using any of the general training algorithms presented
in this book. However, there is a mathematical shortcut in the form of the
reweight least squares training algorithm. This training algorithm is based on
the least squares training, but reweight least squares training can handle the
addition of the link function. Unlike least squares, the reweight least squares
algorithm is iterative. You will need to process iterations until the error is
acceptable. (Chartrand, 2008)

The reweight least squares algorithm falls into a category of training algo-
rithms called gradient descent. The back propagation-training algorithm also
falls under the category of gradient descent; you might be familiar with back
propagation training if you’ve ever worked with neural networks.

Gradient descent makes use of calculus to determine the gradient of the
error function at the current state of the long-term memory (the coefficients).
This gradient will indicate whether we need to increase or decrease each coef-
ficient to lower the error. To do this, we need to determine the derivative of
the link function, which means that link functions must be differentiable (have
a derivative) in order to perform gradient descent.

The derivative of a function is just another function. The derivative func-
tion tells us the instantaneous rate of change for the first function. Consider
a function that describes the position of a car at any given time. If you pass
the value 10 seconds into the function, it tells you the position of the car at
10 seconds. Likewise, if you pass in 60 seconds, you will be given the position
of the car at that time. If you were to take the derivative of the function
describing position at time, you would have a new function that describes the
speed of the car at any time.

174 Linear Regression

When plotted on a graph, the derivative usually looks like a line that
touches the main function at only one point. Consider whether Figure 10.4
represents the error as you varied only one coefficient.

Figure 10.4: Error Derivative from Varying Single Coefficient

The curvy line shows the error function e() as you vary the coefficient w.
The straight line is the derivative of the error function at a given w. Notice
how the slope of the derivative tells us the direction in which the underlying
function is heading. The goal is to descend to the lowest point, which is
somewhere between 2.0 and 2.5. The point at which it touches is currently at
1.5 (the location of the derivative). Therefore, by the slope (or gradient) of
the derivative, we must increase w. This is called gradient descent, because
we use the gradients to descend.

10.2 Generalized Linear Models 175

During training, the program cannot visualize this graph. All that we can
see is one narrow vertical slice, in which exist the error at our current coefficient
value and the derivative. We move the coefficient in the direction indicated
by the derivative and see how much the error improves in the next iteration.
In the next iteration, we calculate a new gradient and continue to adjust the
coefficient. This same process continues until we can no longer improve the
error by a considerable amount.

176 Linear Regression

10.3 Chapter Summary

This chapter introduced two forms of linear regression: regular linear regres-
sion. Regular linear regression requires that a mostly linear relationship exist
between the input vector and output values. Linear regression outputs a single
resulting value.

A linear regression algorithm’s long-term memory is the coefficients that
are used by its equation. These coefficients can be adjusted using the general
training algorithms used earlier in this book. However, there a mathematical
shortcut that can be employed to quickly determine values for the coefficients
that minimize the error between the output from the model and the expected
outputs contained in the training set.

You will see several such shortcuts through this series. There are general
algorithms that can be used to solve nearly any type of problem, and there
are specialized algorithms that only work with specific models. The special
algorithms often use mathematical techniques to perform very efficient opti-
mization of the underlying models. Least squares training and reweight least
squares training are two such examples.

This book introduced you to many fundamental algorithms for AI. Subse-
quent volumes in this series will build more complex algorithms that make use
of the fundamental algorithms in this book. While these algorithms are often
used as building blocks, they are also very useful in their own right.

The next book in this series will cover nature inspired algorithms. The
only model that we have for true intelligence is the human brain and nature.
Because of this, it is natural that we take inspiration from nature to design
algorithms. Genetic algorithms, genetic programming, ant colony optimiza-
tion, particle swarm optimization, and other such algorithms will be explored
in the next book. The next book uses many of the algorithms introduced in
this book.

10.3 Chapter Summary 177

179

Appendix A

Examples

• Downloading Examples

• Structure of Example Download

• Keeping Updated

A.1 Artificial Intelligence for Humans

These examples are part of a series of books that is currently under develop-
ment. Check the above website to see which volumes have been completed
and are available. The planned list is shown here.

The following volumes are planned for this series:

• Volume 0: Introduction to the Math of AI

• Volume 1: Fundamental Algorithms

• Volume 2: Nature Inspired Algorithms

• Volume 3: Neural Networks

• Volume 4: Support Vector Machines

• Volume 5: Probabilistic Learning

180 Examples

A.2 Staying Up to Date

This appendix describes how to obtain the “Artificial Intelligence for Humans”
(AIFH) book series examples.

This is probably the most dynamic area of the book. Computer languages
are always changing and adding new versions. I will update the examples
as this becomes necessary. There are also bugs and corrections. You are
encouraged to always make sure you are using the latest version of the book
examples.

Because this area is so dynamic, this file may have become out of date.
You can always find the latest version of this file at the following location.

https://github.com/jeffheaton/aifh

A.3 Obtaining the Examples

This book’s examples are provided in a number of computer programming
languages. Core example packs are provided for Java, C#, C/C++, Python
and R for most volumes. The community may have added other languages as
well. All examples can be found at the GitHub repository.

https://github.com/jeffheaton/aifh
You have your choice of two different ways to download the examples.

https://github.com/jeffheaton/aifh
https://github.com/jeffheaton/aifh

A.3 Obtaining the Examples 181

A.3.1 Download ZIP File

Github provides an icon that allows you to simply download a ZIP file that
contains all of the example code for the series. A single ZIP file is used to
contain all of the examples for the series. Because of this, the contents of
this ZIP are frequently updated. If you are starting a new volume, it is very
important that you make sure you have the latest copy. The download can be
performed from the following URL.

https://github.com/jeffheaton/aifh
You can see the download link in Figure A.1.

Figure A.1: GitHub

A.3.2 Clone the Git Repository

All examples can be obtained using the source control program git, if it is
installed on your system. The following command clones the examples to your
computer. Cloning simply refers to the process of copying the example files.
g i t c l one https : // g i t h u b . com/ j e f f h e a t o n / a i f h . g i t

You can also pull the latest updates using the following command.
g i t p u l l

https://github.com/jeffheaton/aifh

182 Examples

If you would like an introduction to git refer to the following URL.
http://git-scm.com/docs/gittutorial

A.4 Example Contents

The entire “Artificial Intelligence for Humans” series is contained in one down-
load. This download is a zip file.

Once you open the examples file you will see the contents see in Figure
A.2.

Figure A.2: Examples Download

The license file describes the license used for the book examples. All of the
examples for this series are released under the Apache v2.0 license. This is a
Free and open-source software (FOSS) license. This means that I do retain
a copyright to the files. However, you can freely reuse these files in both
commercial and non-commercial projects without further permission.

While the book source code is provided free, the book text is not provided
free. These books are commercial products that I sell through a variety of
means. You may not redistribute the actual books. This includes the PDF,
MOBI, EPUB and any other format the book might be converted to. I do,
however, provide all books in DRM-free form. Your support of this policy is
greatly appreciated and does contribute to the future growth of these books.

There are also two README files included in the download. The README.md
is a “markdown” file that contains images and formatting. The README.txt

http://git-scm.com/docs/gittutorial

A.4 Example Contents 183

file is plane text. Both files contain the same information. For more informa-
tion on MD files, refer to the following URL.

https://help.github.com/articles/github-flavored-markdown
You will find README files at several levels of the examples download.

The README file contained in the examples root (seen above) contains in-
formation about the book series.

You will also notice the individual volume folders contained in the down-
load. These are named vol1, vol2, etc. You may not see all of the volumes
in the download. Not all of the volumes have been written yet! All of the
volumes have the same format. For example, if you were to open Volume 1,
you would see the contents listed in Figure A.3.

Figure A.3: Inside Volume 1

https://help.github.com/articles/github-flavored-markdown

184 Examples

Again, you see the two README files. These files contain information
unique to this particular volume. The most important information contained
in the volume level README files is the current status of the examples. The
community often contributes example packs. This means that some of the
example packs may not be complete. The README for the volume will let
you know this important information. The volume README.also contains
the errata and FAQ for a volume.

You should also see a file named “chart.R”. This file contains the source code
that I used to create many of the charts in the book. I use the R programming
language to produce nearly all graphs and charts seen in the book. This allows
you to see the equations behind the pictures. I do not translate this file to
other programming languages. R is simply what I use in the production of the
book. If I used another language, like Python, to produce some of the charts,
you would see a “chart.py” along with the R code.

You can see that the above volume contains examples for C, C#, Java,
Python and R. These are the core languages that I try to always ensure com-
plete examples for. However, you may see other languages added. Again,
always check the README file for the latest information on language trans-
lations.

A.4 Example Contents 185

Figure A.4 shows the contents of a typical language pack.

Figure A.4: The Java Language Pack

Notice the README files again? The README files inside of a language
folder are VERY important. Inside the above two README files you will find
information about using the examples with Java. If you are having trouble
using the book’s examples with a particular language, the README file should
be your first stop. The other files seen above are all unique to Java. The
README file above describes these in much greater detail.

186 Examples

A.5 Contributing to the Project

Do you want to translate the examples to a new language? Have you found
something broken, misspelled, or otherwise botched? You probably have. Fork
the project and push a commit revision to GitHub. You will be credited among
the growing number of contributors.

The process begins with a fork. You create an account on GitHub and fork
the AIFH project. This creates a new project, with a copy of the AIFH files.
You will then clone your new for, in a similar way as was described for cloning
the main AIFH repositiory. Once you make your changes you submit a “pull
request”. Once I get this request I will evaluate your changes/additions and
merge it with the main project.

A much more detailed article on contributing through GitHub can be found
here.

https://help.github.com/articles/fork-a-repo

https://help.github.com/articles/fork-a-repo

187

References

This section lists the reference materials for this book.

Anscombe, F. J. (1973). ”Graphs in Statistical Analysis”. American
Statistician

Bäck, Thomas, Evolutionary Algorithms in Theory and Practice (1996), p.
120, Oxford Univ. Press

Banzhaf, Wolfgang; Nordin, Peter; Keller, Robert; Francone, Frank (1998).
Genetic Programming - An Introduction. San Francisco, CA: Morgan
Kaufmann.

Barlow, Jesse L. (1993). ”Chapter 9: Numerical aspects of Solving Linear
Least Squares Problems”. In Rao, C.R. Computational Statistics. Handbook
of Statistics 9. North-Holland. ISBN 0-444-88096-8

Behzad, Arash; Modarres, Mohammad (2002), ”New Efficient
Transformation of the Generalized Traveling Salesman Problem into
Traveling Salesman Problem”

Bishop, Christopher M. (1996) Neural Networks for Pattern Recognition.
Oxford University Press

Bostrom, Nick “Are You Living In a Computer Simulation?” Philosophical
Quarterly, 2003, Vol. 53, No. 211, pp. 243-255.

188 References

Box, G. E. P. and Mervin E. Muller, A Note on the Generation of Random
Normal Deviates, The Annals of Mathematical Statistics (1958), Vol. 29, No.
2 pp. 610-611

Chartrand, R.; Yin, W. (March 31 - April 4, 2008). ”Iteratively reweighted
algorithms for compressive sensing”. IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 2008. pp. 3869-3872.

Das, A. & Chakrabarti, B. K. (2005). Quantum Annealing and Related
Optimization Methods, Lecture Note in Physics, Vol. 679, Springer,
Heidelberg

Deza, Elena & Deza, Michel Marie Deza (2009) Encyclopedia of Distances,
page 94, Springer.

Draper, N.R.; Smith, H. (1998). Applied Regression Analysis (3rd ed.). John
Wiley. ISBN 0-471-17082-8.

Fisher,R.A. ”The use of multiple measurements in taxonomic problems”
Annual Eugenics, 7, Part II, 179-188 (1936)

Green, Colin (2009). ”Speciation by k-means Clustering”.
https://sites.google.com/site/sharpneat/speciation/speciation-by-k-means-
clustering

Guiver, John P., and Klimasauskas, Casimir, C. (1991). ”Applying Neural
Networks, Part IV: Improving Performance.” PC AI, July/August

Hamerly, G. and Elkan, C. (2002). ”Alternatives to the k-means algorithm
that find better clusterings”. Proceedings of the eleventh international
conference on Information and knowledge management (CIKM).

Harris, Zellig (1954). ”Distributional Structure”. Word 10 (2/3): 146-62.

Koch, Christof (2013). “Decoding ’the Most Complex Object in the
Universe” Science Friday, June 14, 2013.

189

Krause, Eugene F (Apr 2, 2012). Taxicab Geometry: An Adventure in
Non-Euclidean Geometry, Dover Books on Mathematics

Lial, Margaret, Hornsby, John, Schneider, David I., Daniels, Callie. (2010)
College Algebra (11th Edition). Pearson.

Lyons, Richard G. (November 2010) Understanding Digital Signal Processing
(3rd Edition). Prentice Hall

Masters, T. (1993). Practical Neural Network Recipes in C++. New York:
Academic Press.

Matsumoto, M.; Nishimura, T. (1998). ”Mersenne twister: a
623-dimensionally equidistributed uniform pseudo-random number
generator”. ACM Transactions on Modeling and Computer Simulation

Marsaglia, G.; Zaman, A. (1991). ”A new class of random number
generators”. Annals of Applied Probability 1 (3): 462-480.

Nash, Warwick J, Sellers, Tracy L., Talbot, Simon R, Cawthorn, Andrew J.
& Ford, Wes B. (1994) ”The Population Biology of Abalone in Tasmania. I.
Blacklip Abalone (H. rubra) from the North Coast and Islands of Bass
Strait”, Sea Fisheries Division, Technical Report No. 48 (ISSN 1034-3288)

Nelder, John A.; R. Mead (1965). ”A simplex method for function
minimization”. Computer Journal 7: 308-313.

Pedhazur, Elazar J (1982). Multiple regression in behavioral research:
Explanation and prediction (2nd ed.). New York: Holt, Rinehart and
Winston. ISBN 0-03-041760-0

Pisinger, D. 2003. Where are the hard knapsack problems? Technical Report
2003/08, Department of Computer Science, University of Copenhagen,
Copenhagen, Denmark.

190 References

Quinlan,R. (1993). Combining Instance-Based and Model-Based Learning.
In Proceedings on the Tenth International Conference of Machine Learning,
236-243, University of Massachusetts, Amherst. Morgan Kaufmann.

Robert, Christian & Casella, George (August, 2005). Monte Carlo Statistical
Method. Springer Texts in Statistics

Ross, Sheldon (2002). A First Course in Probability, pp. 279-81

Russell, Stuart & Norvig, Peter (2009). Artificial Intelligence: A Modern
Approach (3rd Edition). Prentice Hall

Siegel, George J., Hines, Edward Jr., Agranoff, Bernard W., Fisher, Stephen
K. (1999) “Basic Neurochemistry: Molecular, Cellular and Medical Aspects
Sixth Edition” ISBN 0-397-51820-X

Turing, Alan 1948, ”Intelligent Machinery.” Reprinted in ”Cybernetics: Key
Papers.” Ed. C.R. Evans and A.D.J. Robertson. Baltimore: University Park
Press, 1968. p. 31.

191

Index

acceleration, 131
actual, xxii, xxvii, 1–5, 17, 22, 30, 33,

37, 39, 41–43, 45, 53, 60, 70,
74, 77, 85, 97, 100–102, 104,
108, 110, 113, 117, 122, 125,
130, 144, 155, 182

actual output, xxvii, 41, 42, 97, 100–
102, 104, 108, 125

algorithm, xxv–xxviii, 1–4, 6–14, 16–
24, 27, 31, 33, 34, 36, 37, 41–
43, 45, 47, 59, 60, 62, 63, 65–
67, 71–74, 76, 77, 79, 80, 83–
92, 94, 97, 100, 101, 103, 104,
107–114, 118, 126, 127, 129–
134, 136–141, 143, 147, 148,
151–155, 158–160, 165–168, 170,
173, 176

assignment step, 89–91, 94, 96, 97
attribute, vi, 9, 28, 118, 119

batch, 23
bias, 34, 52, 103, 119, 124, 156
biological, 1, 2, 24
biological plausibility, 2
bird, 2, 3
black box, 4
brain, 1–7, 12, 23, 24, 176
brain in a vat, 5

centroid, 89–92, 95–97
class, 7–11, 24, 41, 42, 46, 52, 85, 114,

118, 119, 126, 127
clustering, xxvi, xxvii, 10, 11, 80, 83–

88, 97
cmdscale, 88
coefficient, 107–110, 113, 114, 118, 119,

122, 124, 126, 127, 165, 166,
168, 169, 171, 173–176

continuous, xxviii, 76, 129, 133, 148,
151, 153, 154, 160

contraction, 144, 145, 147
cooling schedule, 137, 138
cryptology, 66
cycle, 137

data sets, 104, 108, 119, 169
dataset, 8–10, 32, 109
denormalize, 35, 36, 38–40
derivative, 170, 173–175
deterministic algorithm, 84
discrete, xxvi, xxviii, 129, 133, 148,

151, 153, 154, 157, 160
distribution, xxvii, 67, 68, 70, 76, 77
downhill, 140
downsample, 18, 19

encode, 11, 15, 21, 33, 41, 43–45, 47,
52, 53, 88

192 INDEX

encoding, 14, 21, 22, 32–34, 40–47, 52,
53, 88, 119

equilateral, 32, 41–45, 47, 52, 119
equilateral encoding, 32, 42–45, 47, 119
equilateral normalization, 42
error, xxvi, 41, 97, 100–104, 108, 109,

134, 137, 140, 141, 165, 173–
176

error calculation, xxvi, 97, 100–102,
104, 134

evaluate, xxvii, 8, 22, 23, 104, 108,
134, 144, 145, 147, 148, 152,
155, 186

expansion, xxiv, 144, 147

flying machine, 3

generalized linear model, 163
genetic, 84, 176
genetic algorithm, 84
geometric, 140
gradient, 173–175
gradient descent, 173, 174
greedy, 111–114, 120, 125–127, 130,

131, 133, 136, 137, 139–141,
144, 145, 147

greedy random training, 111, 113, 125–
127

hash table, 13–16
hill climbing , xxviii, 114, 120, 130–

134, 140, 148

ideal, 16, 21, 33, 41, 42, 85, 88, 97, 99–
102, 104, 110, 166, 167, 170

ideal output, 21, 33, 41, 42, 88, 97,
100–102, 110, 166, 167

image, 1, 4, 18–20, 59, 61–63, 183
initialization step, 89, 91, 94, 96, 97
input coefficients, 124
internal state, 4, 5, 7, 11, 20–22, 24,

65–67, 72, 80
iris, 8, 9, 11, 32, 33, 41, 42, 52, 53, 85–

88, 91, 118–120, 122, 125–127
iris data, 8, 32, 33, 52, 53, 85–88, 118,

122, 125, 127
iris dataset, 8, 32
iteration, 90, 97, 112, 113, 125, 126,

131–133, 137, 138, 141, 145–
147, 168, 173, 175

key, 13, 14, 44
knapsack problem, 151, 156–158, 160

least squares, 166–168, 173, 176
linear equation, xxviii, 167
linear regression, xxvi, xxviii, 119, 160,

163, 165–167, 169–172, 176
link function, 163, 170, 171, 173
local maxima, 130
local minima , 131, 148
logistic regression, 171
logit, 171, 172
long-term memory, xxvi–xxviii, 22, 24,

108, 109, 111, 113, 114, 120,
122, 126, 127, 129, 151, 165,
166, 173, 176

machine learning, xxvi, 9, 12, 13, 15,
21, 24, 31, 33, 34, 36, 42, 59,
60, 62, 63, 65, 85, 90, 97, 100,
101, 103, 104, 108–110, 114,
126, 129, 130, 134, 147, 148,
160, 166

INDEX 193

manifold, 52
matrix, 22, 45–47, 166–168
mean, xxi, xxviii, 2, 5, 13, 14, 20, 24,

30–32, 34, 36, 37, 39, 41–43,
48, 52, 55, 65, 68, 72, 83, 84,
88, 89, 91, 92, 100–102, 118,
140, 153–155, 166, 173, 182,
184

model, xxvi, xxviii, 1, 3, 6, 7, 16, 24,
84, 101, 103, 104, 114, 117–
120, 122, 127, 148, 160, 163–
171, 176

multivariate linear regression, 165

neural network, xxv, xxvi, 6, 7, 22, 23,
59, 101, 119, 173

nominal , 29, 30, 32, 34, 39
non-numeric data, 9
nondeterministic algorithm, 84
normal, xxvii, 6, 17, 18, 20, 21, 24,

27, 31–43, 45, 47, 48, 58, 59,
68–71, 76, 77, 86, 100, 152

normalize, xxvii, 17, 18, 21, 27, 31–41,
43, 47, 48, 58, 59, 86, 100

null, 14

observation, 29–39, 51, 52, 80, 83–86,
88–97, 110, 170

one-dimensional, 43, 51
one-of-n, 32–34, 40–42, 52, 53, 88, 119
ordinal , 29–32, 34, 35
ornithopter, 2
output layer, 13

parameter, 13, 112, 114, 122, 131
pattern, xxvi, 12, 13, 19, 103
pattern recognition, 13

period, viii, ix, 66, 67, 72–74
physical, viii
pixel, 18–20, 60–62
plot, xxvii, 169, 174
polynomial, 84, 109, 110, 113, 114, 120,

123, 127
position, 17, 130, 134, 137–140, 142,

144, 146, 148, 153, 154, 159,
166–168, 173

predict, xxviii, 11, 16, 17, 20, 21, 33,
36, 41, 42, 67, 103, 118–120,
170, 172

prediction, xxviii, 11, 20
prime, 74, 75
probability, xxvii, 14, 67–69, 134, 137–

140
problem, xxviii, 1, 2, 7, 13, 15–17, 20,

22, 24, 41, 51, 60, 80, 84, 119,
129, 140, 151–160, 163, 165,
169, 176

programming language, xxii, 68, 69,
71, 76, 168, 180, 184

pseudorandom number generation, 65,
66

qualitative , 27
quantitative, 27–30, 36–39

random, xxvii, xxviii, 23, 63, 65–74,
76–80, 84, 88, 91–95, 102, 103,
110–114, 120, 122, 125–127, 130,
131, 133, 134, 136, 137, 139–
141, 147, 153, 154, 159

ratio, ix, xxvii, 4, 7, 29–33, 37, 51, 56,
65, 66, 70, 71, 73, 74, 76, 78–
80, 85, 86, 88, 90, 97, 109, 112,
113, 125–127, 131–133, 137, 138,

194 INDEX

141, 143, 145–147, 154, 159,
168, 173, 175, 176

reality, 5–7
reflection, 143, 145, 147
regression, xxvi, xxviii, 10, 24, 114,

118, 119, 127, 160, 163–167,
169–172, 176

regression analysis, 10
reweight least squares , 173, 176
robot, 1, 7, 70
roulette wheel, 70

score function, 133
search, vi–ix, 6, 7, 53, 72, 84, 85, 108,

130, 133, 142, 144–148, 153
seed, 46, 67, 72–74
serial correlation, 72
short-term memory, xxvi, xxvii, 12,

24, 107, 114
simplex, 140–142, 144, 146, 147
simulated annealing, 109, 127, 133, 134,

137–139, 141, 147, 148, 151–
155, 158–160

sort, xxviii, 1, 24, 29
species, xxvii, 9, 32, 33, 52, 84–88, 91,

119, 120, 122
standard deviation, 69
statistical model, 114, 117, 118, 160,

163
stimuli, 4
stock, 7, 11, 20, 31, 32
stock market, 20
supercomputer, 6
supervised training, 7, 10, 23, 85, 86,

88, 97, 99, 104
support vector machine, 101

synthetic , 119

temperature, 29–31, 133, 134, 137–140,
167

temporal, 20
test set, 104
third degree polynomial, 109, 110
time series, 11
training set, 23, 33, 85, 88, 99–104,

108, 110, 126, 165, 166, 176
traveling salesman problem, 151, 152,

154, 160

uniform, xxvii, 67, 68, 70, 71, 77
unknown data, 8
unsupervised training, 10, 85, 86, 97
update step, 89–92, 94, 97

validation set, 103
value, xxviii, 10, 11, 13–18, 20, 21, 24,

30–33, 35–42, 46, 67, 72–74,
76–78, 80, 86, 90, 95, 97, 100,
101, 108–111, 113–116, 119, 120,
122, 124, 127, 133, 134, 140,
148, 152, 153, 158–160, 163–
165, 167, 171–173, 175, 176

variance, 101
vector, xxvii, xxviii, 12, 14, 15, 24,

27, 31, 33, 34, 47, 48, 51–54,
56, 58, 61–63, 83–85, 88, 89,
91, 97, 99–101, 104, 107–111,
113–116, 118–120, 124, 126, 127,
129–131, 134, 140, 141, 148,
151, 158, 163–165, 171, 176

weight, xxviii, 9, 18, 22, 37–39, 41,
107, 118, 119, 124, 126, 157–
160, 173, 176

	Introduction
	Series Introduction
	Programming Languages
	Online Labs
	Code Repositories
	Books Planned for the Series
	Other Resources

	Fundamental Algorithms Introduction
	Structure of this Book
	The Kickstarter Campaign

	Introduction to AI
	Relationship to Human Brains
	The Brain and Its World
	Brain in a Vat

	Modeling Problems
	Data Classification
	Regression Analysis
	Clustering
	Time Series

	Modeling Input and Output
	A Simple Example
	Miles per Gallon
	Presenting Images to Algorithms
	Financial Algorithms

	Understanding Training
	Evaluating Success
	Batch and Online Training
	Supervised and Unsupervised Training
	Stochastic and Deterministic Training

	Chapter Summary

	Normalization
	Levels of Measurement
	Quantitative Observations

	Normalizing Observations
	Normalizing Nominal Observations
	Normalizing Ordinal Observations
	Denormalizing Ordinal Observations
	Normalizing Quantitative Observations
	Denormalizing Quantitative Observations

	Other Methods of Normalization
	Reciprocal Normalization
	Reciprocal Denormalization
	Understanding Equilateral Encoding
	Implementing Equilateral Encoding

	Chapter Summary

	Distance Metrics
	Understanding Vectors
	Calculating Vector Distance
	Euclidean Distance
	Manhattan Distance
	Chebyshev Distance

	Optical Character Recognition
	Chapter Summary

	Random Number Generation
	PRNG Concepts
	Random Distribution Types
	Roulette Wheels
	PRNG Algorithms
	Linear Congruential Generator
	Multiply with Carry
	Mersenne Twister
	Box Muller Transformation

	Estimating PI with Monte Carlo
	Chapter Summary

	K-Means Clustering
	Understanding Training Sets
	Unsupervised Training
	Supervised Training

	Understanding the K-Means Algorithm
	Assignment Step
	Update Step

	Initializing the K-Means Algorithm
	Random K-Means Initialization
	Forgy K-Means Initialization

	Chapter Summary

	Error Calculation
	Sum of Squares Error
	Root Mean Square
	Mean Square Error
	Comparison of Error Calculation Methods
	Partitioning Training Data

	Chapter Summary

	Towards Machine Learning
	Coefficients of a Polynomial
	Introduction to Training
	Greedy Random Training

	Radial Basis Networks
	Radial Basis Functions
	Radial Basis Function Networks
	Implementing an RBF Network
	Using an RBF Network

	Chapter Summary

	Optimization Training
	Hill Climbing Training
	Simulated Annealing
	Simulated Annealing Applications
	Simulated Annealing Algorithm
	Cooling Schedule
	Annealing Probability

	Nelder Mead
	Reflection
	Expansion
	Contraction

	Finishing the Nelder Mead Algorithm
	Chapter Summary

	Discrete Optimization
	The Traveling Salesman Problem
	Understanding the Traveling Salesman Problem
	Implementing the Traveling Salesman Problem

	Circular TSP
	The Knapsack Problem
	Understanding the Knapsack Problem
	Implementing the Knapsack Problem

	Chapter Summary

	Linear Regression
	Linear Regression
	Least Squares Fitting
	Least Squares Fitting Example
	Anscombe's Quartet
	Abalone Data Set

	Generalized Linear Models
	Reweight Least Squares Training

	Chapter Summary

	Examples
	Artificial Intelligence for Humans
	Staying Up to Date
	Obtaining the Examples
	Download ZIP File
	Clone the Git Repository

	Example Contents
	Contributing to the Project

	References

