
Take your Machine Learning skills to the next level! Register at www.enthought.com/python-for-data-science-training
© 2017 Enthought , Inc. , l icensed under the Creat ive Commons Attr ibut ion-NonCommercial -NoDerivat ives 4.0 Internat ional L icense.

To v iew a copy of this l icense, v is i t http://creat ivecommons.org/ l icenses/by-nc-nd/4.0/

mean_squared_error: Smaller is better.
Puts large weight on outliers.

r2_score: Coefficient of determination.
Best score is 1.0. Proportion of explained

variance. Default for model.score(x, t).

mean_absolute_error: Smaller is better.
Uses same scale as the data.

median_absolute_error: Robust to outliers.

Performance Metrics in sklearn.metrics

Stochastic Gradient Descent (SGD) Regressor

When to use it: Many important features,
more features than samples, nonlinear

problem.
How it works: Find a function such that

training points fit within a “tube” of acceptable
error, with some tolerance towards points that are

outside the tube.
Gotchas: Must scale inputs, see StandardScalar and RobustScalar.

Code: Start with svm.LinearSVR(epsilon, C=1).
Make C smaller if lots of noisy observations (C = 1/α, small C means

more regularization).
If LinearSVR doesn’t work, use svm.SVR(kernel='rbf', gamma).

Support Vector Regressor ~O(N2D)

When to use it: Fit is too slow with other estimators.
How it works: “Online” method, learns the weights in batches,

with a subset of the data each time. Pair with manual basis function
expansion to train nonlinear models on really large datasets.

Code: linear_model.SGDRegressor() and partial_fit() method.

When to use them: “Straight line” not sufficient, for example,
predicting temperature has a function of time of day.
How it works: “Reword” a nonlinear model in linear terms using
nonlinear basis functions, Φj(x), so we can use linear model
machinery to solve nonlinear problems. Linear model becomes:

Polynomial Expansion of Order P: E.g. A 2nd order polynomial
two-feature model:
Becomes a model with these 6 basis functions:

Gotchas: Same feature affects many different coefficients, so an
outlier can have a big global effect. Number of basis functions
grows very quickly, O((P+1)(D+1)).

Code: poly=preprocessing.PolynomialFeatures(degree)
x_poly = poly.fit_transform(x)

Radial Basis Functions (RBF): Local, Gaussian-shaped functions,
defined by centers and width. Turns one feature into P features.

Code: metrics.pairwise.rbf_kernel(x, centers, gamma)

Nonlinear Transformations

With Ridge and Lasso, the error to minimize E has
an extra component Ew:

Lasso produces sparse models because small
weights are forced to zero.

Ridge vs. Lasso – Shape of Ew

When to use it: Less than 100k samples, only some features should be
important.
How it works: Linear model that forces small weights to be zero.
Minimizes E instead of ED , where the second term is called “L1 norm”:

Code: linear_model.Lasso(alpha)
• alpha: Regularization strength, alpha > 0, corresponds to
• 1/C in other models. Increase if noisy samples.
Tip: Use with feature_selection.SelectFromModel as a
transformation stage to select features with non-zero
weights.

Lasso O(ND2)

When to use it: Less than 100k samples, noisy outputs.
How it works: Linear model that limits the size of the weights. Prevents overfitting by
increasing bias. Minimizes E instead of ED , where second term is called “L2 norm”:

Code: linear_model.Ridge(alpha)
• alpha: Regularization strength, alpha > 0, corresponds to 1/C in other models.
• Increase if noisy samples.

Ridge O(ND2)

Solves problems of the form:

with predicted value y, features, x, and fitted weights w.
Solved by minimizing “least square error”, ED:

On fitted models, access w as model.coef_ and w0 as model.intercept_.
Gotchas: Features must be uncorrelated, use decomposition.PCA().
Code: linear_model.LinearRegression() if less than 100k samples, or see SGD.

Linear Model O(ND2)

Regression: Predict Continuous Data

Predict how a dependent variable (output, t) changes when any
of the independent variables (inputs, or features, x) change,
for example, how house prices change as a function of
neighborhood and size, or how time spent on a web page
varies as a function of the number of ads and content
type. Training data has N samples and D features.

Take your Machine Learning skills to the next level! Register at www.enthought.com/python-for-data-science-training
© 2017 Enthought , Inc. , l icensed under the Creat ive Commons Attr ibut ion-NonCommercial -NoDerivat ives 4.0 Internat ional L icense.

To v iew a copy of this l icense, v is i t http://creat ivecommons.org/ l icenses/by-nc-nd/4.0/

They take targets, t, and predicted classes, y, as arguments.
There's more than one way to be wrong. A fire alarm that

always goes off is annoying, one that never goes off is costly.
• confusion_matrix: Explore how model confuses classes.

 Visualize with seaborn.heatmap.

Performance Metrics in sklearn.metrics

 Support Vector Classifier
O(ND2) to O(ND3)

When to use it: Very large N and D, e.g., 105

samples and 105 features.
How it works: “Online” method, learns the weights

in batches.
Gotchas: Data must be scaled.

Code: linear_model.SGDClassifier(loss, alpha, n_iter)
and partial_fit() method.

• Use n_iter=np.ceil(10**6/n_samples). loss='hinge' gives SVC,
'log' gives logistic regression.

When to use it: Large number of
features. Slightly more features than
samples.
How it works: Maximize distance
between classes in high-dimensional
space, i.e., “maximum margin classifier”.
Gotchas: Scale your data.
Code: svm.SVC(kernel, C=1).
Make C smaller if lots of noisy samples.
If accuracy is important set kernel='rbf'.
If fast training is important, use svm.LinearSVC().

When to use them: No single estimator gave satisfying results.
How they work: "Wisdom of the crowd". Combines predictions of
multiple weak, biased estimators to create a better one. Two types:
averaging methods build many estimators and average predictions;
in boosting methods each new estimator tries to improve the
previous one.
Gotchas: Hard to generate the perfect mix of estimators.
Code: All in ensemble module.

Averaging estimators:
• RandomForestClassifier(max_features)
• ExtraTreesClassifier(max_features)
Start with these, but always cross-validate:
• max_features=sqrt(n_features)
• max_depth=None
• min_samples_split=1

Boosting estimator:
• AdaBoostClassifier()
• GradientBoostingClassifier()

All:
• Parallelize with n_jobs=-1
• Increasing n_estimators is better, but
• slower

Ensemble Methods

When to use it: Need to understand prediction decisions. Data has both
continuous and categorical features. No scaling needed.
How it works: Chain binary decisions on increasingly smaller subsets of data.
Deeper trees have more complex decision rules and a better fit.
Gotchas: Very often overfits. Consider doing dimensionality reduction before-
hand. N must double with each extra level.
Code: tree.DecisionTreeClassifier(max_depth). Start with
max_depth=3, then increase. Use tree.export_graphviz to visualize tree.

Decision Tree O(NDlog(N))

When to use it: Need to understand contributions of
features. Fast to train, easy to interpret.
How it works: Fits an s-shaped function (logistic function),
which is continuous but has a steep transition between the
two classes, and assigns class based on sign.
Gotchas: Inputs must be scaled and uncorrelated.
Code: linear_model.LogisticRegression(C, solver).
• penalty='l1' to use estimator for feature selection.
• solver='liblinear' for small datasets or L1 penalty,
• 'lbfgs', 'sag' or 'newton-cg' for multi-class problems and large datasets, and
• 'sag' for very large datasets.

Logistic Regression O(ND2)

Classification: Predict Categorical Data

Predict the class, or label (t), of a sample based on its features (x).
Examples: Recognize hand-written digits, or mark email as spam. In
scikit-learn, labels are represented as integers and get expanded
internally into matrices of binary choices between unique integer
labels. Use class_weight='balanced' in most models to adjust
for unbalanced datasets (more training data from one class than
others). Training data has N samples and D features.

Yes Noknown number?

is grandma?

ignorepick up

ignore

 Neighbor Classifiers
O(DlogN) to O(DN)

When to use them: Large datasets.
Very irregular decision boundary.
How it works: Predict class by majority vote
from nearby data.
Gotchas: Efficiency comes at the cost of also
having high variance.
Code: neighbors.KNeighborsClassifier(n_neighbors).
• Use RadiusNeighborsClassifier() for unbalanced data
• and D not too large.
• Try weights='uniform' and 'distance'.

?
K=3

K=5

 Stochastic Gradient Descent
(SGD) Classifier

C1 C2 C3

C1
C2

C3

• accuracy_score (default for
model.score): Fraction correctly

predicted. Meaningless if samples are
unbalanced. (TP + TN) / Total

• recall_score: Fraction of predicted fire
when there's actually fire. TP / (TP + FN)

• precision_score: Fraction of correctly
predicted fire of all cases where fire is predicted.

P predicted as P. TP / (TP + FP)

true
positives

false
positives

false negatives true negatives

predicted as positive

Take your Machine Learning skills to the next level! Register at www.enthought.com/python-for-data-science-training
© 2017 Enthought , Inc. , l icensed under the Creat ive Commons Attr ibut ion-NonCommercial -NoDerivat ives 4.0 Internat ional L icense.

To v iew a copy of this l icense, v is i t http://creat ivecommons.org/ l icenses/by-nc-nd/4.0/

The metrics do not take into account the exact class values, only their separation.
Score is based on ground truth, (targets), if available, or to a measure of similarity within
class, and difference across classes.
Needs ground truth:
• adjusted_rand_score: -1 to 1 (best). 0 is random classes. Measures similarity.
• Related to accuracy (% correct).
• adjusted_mutual_info_score: 0 to 1 (best). 0 is random classes. 10x slower than
• adjusted_rand_score. Measures agreement.
• homogeneity_completeness_v_measure: 0 to 1 (best). homogeneity: each
• cluster only contains members of one class; completeness: all members of a class •
• are in the same cluster: and, v_measure_score: the harmonic mean of both. Not
• normalized for random labeling. Doesn't need ground truth:
• silhouette_score: -1 to 1 (best). 0 means overlapping clusters. Based on distance
• to samples in same cluster and distance to next nearest cluster.

Performance Metrics in sklearn.metrics

When to use it: Large number of observations and small
number of features.

How it works: Builds a balanced tree of groups of data, then
clusters those groups instead of the raw data.

Gotchas: Performs poorly with large number of features.
Code: cluster.Birch(threshold, branching_factor,
n_clusters)

BIRCH O(kN)

When to use it: Need a flexible definition of distance (e.g.
Levenshtein).
How it works: Defines all observations as unique clusters, then
merges the closest ones iteratively.
Gotchas: Worst time complexity. “Rich get richer” behavior.
Code: cluster.AgglomerativeClustering(linkage,
affinity, connectivity). Set linkage criteria for merging:
• 'ward': minimize sum of square differences. Minimizes
• variance. Gives most regular cluster size.
• 'complete': minimize max distance between sample pairs.
• 'average': minimize average distance between all sample pairs
• Yields uneven cluster sizes.
affinity: defines type of distances. 'l1' for sparse features,
e.g., text; 'cosine' is invariant to scaling.
connectivity: provides extra constraints about which nodes can
be merged, e.g., neighbors.kneighbors_graph.

Agglomerative Clustering O(N2 logN)

When to use it: Very non-flat geometries.
Very uneven clusters.
How it works: Clusters are contiguous
areas with high data density. Bounds of
clusters are found using graph
connectivity.
Gotchas: O(N2) memory use.
Not deterministic at cluster boundaries.
Code: cluster.DBSCAN(min_samples,
eps, metric)
• Higher min_samples, or lower eps
• requires higher density to form a
• cluster.

DBSCAN O(N2)

When to use it: Unknown number of clusters. Need to specify own
similarity metric (affinity argument).
How it works: Finds data points which maximize similarity within
cluster while minimizing similarity with data outside of cluster.
Gotchas: O(N2) memory use. Accuracy tied to damping.
Code: cluster.AffinityPropagation(preference,
damping)
• preference: Negative. Controls the number of clusters.
• Explore on log scale.
• damping: 0.5 to 1.

Affinity Propagation O(N2)

When to use it: Non-flat geometries. Unknown number of clusters. Need to
guarantee convergence.
How it works: Finds local maxima given a window size.
Gotchas: Accuracy strongly tied to selecting correct window.
Code: cluster.MeanShift(bandwith). Set bandwidth manually to small
value for large dataset. Estimating it is O(N2) and can be the bottleneck.

Mean Shift O(NlogN)

K-Means O(kN)
When to use it: Scales well. Works best on a small number of flat clusters. For large
sample sizes, substitute MiniBatchKMeans.
How it works: Assigns samples to nearest of k cluster centers, then moves the centers
to minize the average distance between centers and samples.
Gotchas: The K-Means algorithm used by scikit-learn is sensitive to initial location of the
centers. Performs poorly on complex, non-flat shapes.
Code: cluster.KMeans(n_clusters). n_jobs=-1 to parallelize.

Clustering: Unsupervised Learning
Predict the underlying structure in features, without the use of
targets or labels. Splits samples into groups called “clusters”.
With no targets, models are trained by minimizing some
definition of “distance” within a cluster. Data has N samples,
D features, and the model discovers k clusters. Models can
be used for prediction or for transformation, by reducing
D features into one with k unique values.

Some models expect geometries that
are “flat”, or roughly spherical.

Clusters with complicated shapes like
rings or lines are not flat, and will not

work in those models. Flat Non-Flat Non-Flat

branching factor = 3

Outlier

Core Samples

debc

def
bcdef

abcdef

a b c d e fa

b
c

d
e

f1.Init 2. Classification 3. Update centers Repeat 2. & 3.

	scikit-learn-regression
	scikit-learn-classification
	scikit-learn-clustering

