Regression: Predict Continuous Data

Predict how a dependent variable (output, t) changes when any
of the independent variables (inputs, or features, x) change, Nonlinear Transformations
for example, how house prices change as a function of e -
: : ) When to use them: “Straight line” not sufficient, for example,
neighborhood and size, or how time spent on a web page predicting temperature has a function of time of day.
varies as a function of the number of ads and content How it works: “Reword” a nonlinear model in linear terms using
- nonlinear basis functions, ®(x), so we can use linear model
type. Training data has N samples and D features. !

machinery to solve nonlinear problems. Linear model becomes:
Linear Model O(ND?)

y(w, x) = wodo(x) + wid1(x) + ... + w;;(x)
Solves problems of the form:

Yy =W+ wixy + ...+ WgXq
with predicted value y, features, x, and fitted weights w.
Solved by minimizing “least square error”, E:

Polynomial Expansion of Order P: E.g. A 2" order polynomial
two-feature model: y(w.x) = (wo + wixi + woxx)*
Becomes a model with these 6 basis functions:

Bo(x) =1, d1(x) = x1, Pa(x) = x2, P3(x) = x7, Pa(x) = x1x2, P5(x) = X3,

Gotchas: Same feature affects many different coefficients, so an
outlier can have a big global effect. Number of basis functions

N—1 .
5 grows very quickly, O((P+1)®).
Epw, x) = E (th — Yn) X .
—o Code: poly=preprocessing.PolynomialFeatures(degree)

X . ly = ly.fit_t f
On fitted models, access w as model.coef_ and w, as model.intercept_. x_poly = poly.fit_transform(x)

Gotchas: Features must be uncorrelated, use decomposition.PCA(). Radial Basis Functions (RBF): Local, Gaussian-shaped functions
Code: linear_model.LinearRegression() if less than 100k samples, or see SGD. defined by centers and width. Turns c;ne Faiiue e [P Faaiies !

R I d ge O ( N Dz) Code: metrics.pairwise.rbf_kernel(x, centers, gamma)

When to use it: Less than 100k samples, noisy outputs. 1| e osta o ] weiontearers
How it works: Linear model that limits the size of the weights. Prevents overfitting by = reaicon >QQQQ< & preceten
increasing bias. Minimizes E instead of £, where second term is called “L2 norm™: 0
1 D-1 5 1 - RBFs, ¢,(x) 4=
E(w,x) = ED(w,x)+a§ E Wy :

d=0
Code: linear_model.Ridge(alpha)
« alpha: Regularization strength, alpha > 0, corresponds to 1/C in other models.
Increase if noisy samples.

Lasso O(ND?)

When to use it: Less than 100k samples, only some features should be
important.

How it works: Linear model that forces small weights to be zero.
Minimizes E instead of £, where the second term is called “L1 norm™:

D—-1

1
E(w,x) = Ep(w,x) + as ; |wa|

Code: linear_model.Lasso(alpha)
+ alpha: Regularization strength, alpha > 0, corresponds to ) )

1/C in other models. Increase if noisy samples. Stochastic Gradient Descent (SGD) Regresso
Tip: Use with feature_selection.SelectFromModel as a
transformation stage to select features with non-zero
weights.

Ridge vs. Lasso - Shape of E

With Ridge and Lasso, the error to minimize E has
an extra component £ :

E(w,x) = Ep(w, x) + aEp(w)

Lasso produces sparse models because small
weights are forced to zero.

Performance Metrics in sklearn.metrics

10091
75 \

| 3550 (L1 Nnorm)
== = Ridge (L2 nori

En(w)

50

25

coefficient value




Classification: Predict Categorical Data

Predict the class, or label (), of a sample based on its features (x).
Examples: Recognize hand-written digits, or mark email as spam. In
scikit-learn, labels are represented as integers and get expanded
internally into matrices of binary choices between unique integer
labels. Use class_weight="'balanced' in most models to adjust
for unbalanced datasets (more training data from one class than
others). Training data has N samples and D features.

Logistic Regression O(ND?)

When to use it: Need to understand contributions of

features. Fast to train, easy to interpret.

How it works: Fits an s-shaped function (logistic function),

which is continuous but has a steep transition between the

two classes, and assigns class based on sign.

Gotchas: Inputs must be scaled and uncorrelated.

Code: linear_model.LogisticRegression(C, solver).

* penalty="'11" to use estimator for feature selection.

* solver="1liblinear' for small datasets or L1 penalty, X
'"lbfgs', 'sag' or '"newton-cg' for multi-class problems and large datasets, and
'sag' for very large datasets.

Decision Tree O(NDlog(N))

When to use it: Need to understand prediction decisions. Data has both
continuous and categorical features. No scaling needed.

How it works: Chain binary decisions on increasingly smaller subsets of data.
Deeper trees have more complex decision rules and a better fit.

Gotchas: Very often overfits. Consider doing dimensionality reduction before-
hand. N must double with each extra level.

Code: tree.DecisionTreeClassifier(max_depth). Start with
max_depth=3, then increase. Use tree.export_graphviz to visualize tree.

known number?
e N

is grandma?

Ensemble Methods

When to use them: No single estimator gave satisfying results.
How they work: "Wisdom of the crowd". Combines predictions of
multiple weak, biased estimators to create a better one. Two types:
averaging methods build many estimators and average predictions;
in boosting methods each new estimator tries to improve the
previous one.

Gotchas: Hard to generate the perfect mix of estimators.

Code: All in ensemble module.

Averaging estimators:

* RandomForestClassifier (max_features)
* ExtraTreesClassifier (max_features)
Start with these, but always cross-validate:
*max_features=sqrt(n_features)

* max_depth=None

*min_samples_split=1

Boosting estimator:
* AdaBoostClassifier()
* GradientBoostingClassifier()

All:
* Parallelize with n_jobs=-1

Increasing n_estimators is better, but
slower

* accuracy_score (default for
model.score): Fraction correctly .]

predicted. Meaningless if samples are ~ grsg
unbalanced. (TP + TN) / Total E']

* recall_score: Fraction of predicted fire .
when there's actually fire. TP / (TP + FN) E

* precision_score: Fraction of correctly .
predicted fire of all cases where fire is predicted. ~——
P predicted as P. TP / (TP + FP) O

Support Vector Classifier
O(ND?) to O(ND?)

When to use it: Large number of
features. Slightly more features than
samples.

How it works: Maximize distance
between classes in high-dimensional
space, i.e., “maximum margin classifier”.
Gotchas: Scale your data.

Code: svm.SVC(kernel, C=1).

Make C smaller if lots of noisy samples.
If accuracy is important set kernel="rbf".

If fast training is important, use svm.LinearSVC().

Neighbor Classifiers
O(DlogN) to O(DN)

When to use them: Large datasets. . A.-- A

Very irregular decision boundary.

How it works: Predict class by majority vote

from nearby data.

Gotchas: Efficiency comes at the cost of also

having high variance.

Code: neighbors.KNeighborsClassifier(n_neighbors).

» Use RadiusNeighborsClassifier () for unbalanced data
and D not too large.

* Tryweights="uniform' and 'distance’.

Stochastic Gradient Descent
(SGD) Classifier

Performance Metrics in sklearn.metr1ics

By 1
1 c2 c3

false negatives

true negatives

1
predicted as positive




Clustering: Unsupervised Learning

Predict the underlying structure in features, without the use of
targets or labels. Splits samples. into grou.ps c§ll_ed clusters”. Agglomerative Clustering O(N? logN)
With no targets, models are trained by minimizing some

" - T When to use it: Need a flexible definition of distance (e.g.
definition of “distance” within a cluster. Data has N samples, Levenshtein).
D features, and the model discovers k clusters. Models can How it works: Defines all observations as unique clusters, then

P : : merges the closest ones iteratively.

be used for predICtlon or for transformation, by reducmg Gotchas: Worst time complexity. “Rich get richer” behavior.

D features into one with k unique values. Code: cluster.AgglomerativeClustering(linkage,
affinity, connectivity).Set linkage criteria for merging:

Some models expect geometries that . 'wa.\rd': mi.nimize sum of square diffe;rences. Minimizes
are “flat”, or roughly spherical. :‘..: e : °. variance. Gives most regular c!uster size. .
Clusters with co’mplicated shapes like o :. R ﬁﬁ ,o' * 'complete’: minimize max dlstgnce between sample pairs. .
rings or lines are not flat, and will not :s' o %0oe® o * 'average': minimize average distance between all sample pairs
work in tHose models e e NomFlat Yields uneven cluster sizes.
) affinity: defines type of distances. '11' for sparse features,

e.g., text; 'cosine' is invariant to scaling.
K-M eans O ( kN) connectivity: provides extra constraints about which nodes can
be merged, e.g., neighbors.kneighbors_graph.

¥

When to use it: Scales well. Works best on a small number of flat clusters. For large
sample sizes, substitute MiniBatchKMeans.

How it works: Assigns samples to nearest of k cluster centers, then moves the centers
to minize the average distance between centers and samples.

Gotchas: The K-Means algorithm used by scikit-learn is sensitive to initial location of the
centers. Performs poorly on complex, non-flat shapes.

Code: cluster.KMeans(n_clusters). n_jobs=-1 to parallelize. bcdef — def
1.Init 2. Classification 3. Update centers Repeat 2. & 3. 7
.o . ° ’o = ° .o o ° .o . ° abcdef
[ ] [ ] X z. 5] ..
° 9 1) ° 9 1) ° °
o o . . BIRCH O(kN)
[ ° ° [ -&. ° e @ o

Mean Shift O(NlogN)

When to use it: Non-flat geometries. Unknown number of clusters. Need to
guarantee convergence.

How it works: Finds local maxima given a window size.

Gotchas: Accuracy strongly tied to selecting correct window.

Code: cluster.MeansShift(bandwith). Set bandwidth manually to small
value for large dataset. Estimating it is O(N?) and can be the bottleneck.

branching factor = 3

When to use it: Unknown number of clusters. Need to specify own
similarity metric (affinity argument).
How it works: Finds data points which maximize similarity within
cluster while minimizing similarity with data outside of cluster.
Gotchas: O(N?) memory use. Accuracy tied to damping.
Code: cluster.AffinityPropagation(preference, . . .
damping) Performance Metrics in sklearn.metrics
» preference: Negative. Controls the number of clusters.
Explore on log scale.
* damping: 0.5to0 1.

DBSCAN O(N?)

When to use it: Very non-flat geometries.
Very uneven clusters.

How it works: Clusters are contiguous
areas with high data density. Bounds of
clusters are found using graph
connectivity.

Gotchas: O(N?) memory use.

Not deterministic at cluster boundaries.
Code: cluster .DBSCAN(min_samples,
eps, metric)

* Higher min_samples, or lower eps
requires higher density to form a
cluster.




	scikit-learn-regression
	scikit-learn-classification
	scikit-learn-clustering

